Interpretation: The experimental procedure to test the hypothesis that solute blocking of solvent vaporization is not the reason that solutions have lower vapor pressures than the pure solvents is to be determined.
Concept introduction: According to Raoult’s law, the vapor pressure of a solution is equal to the product of the mole fraction and the vapor pressure of the pure solvent.
The expression of Raoult’s law is,
Answer to Problem 1DE
Solution: The interaction between solute and solvent and the number of solute particles are responsible for the lower vapor pressures of the solution than the pure solvents.
Explanation of Solution
According to Raoult’s law, the vapor pressure of a solution is equal to the product of the mole fraction and the vapor pressure of the pure solvent.
The expression of Raoult’s law is,
When a solute is added to a solution, the vapor pressure of the solution decreases because on addition of solute, the gap between the solvent molecules gets filled. Hence, on the surface of solution, the number of solvent molecule is less as compared to the pure solvent. This indicates that the number of solvent molecule enter into the gas phase is less and due to this there is a decrease in vapor pressure.
Using the Raoult’s law, the lowering of vapor pressure can be explained.
Assume two sealed containers, one is for pure solvent and other is for solution. The equilibrium stage arises when the number of molecules striking on the surface of the molecule becomes equal to the number of molecules going to the gas phase. On addition of solute, half of the surface of the solution is occupied by the solute and half of the surface is occupied by solvent molecules.
Figure 1
The vapor pressure of the solution depends upon the number of solvent molecule present on the surface of the solution. As the number of solute molecule increases, the number of solvent molecule present on the surface of solution decreases, now lesser number of solvent molecules is present to go in gas phase. Hence, the vapor pressure of the solution decreases.
The attraction between molecules of solvent with solute also plays an important role in lowering the vapor pressure. If there is a strong attraction between the solute and solvent, than the solvent molecule try to remain in the solution rather than escaping from it. Due to this, lowering of vapor pressure occurs because now there are less number of solvent molecule in vapor phase.
Another important factor is that, number of molecules present in the solution is not important rather than this number of solute particles present in the solution is important.
More the number of solute particles, low will be the vapor pressure.
The interaction between solute and solvent and the number of solute particles are responsible for the lower vapor pressures of the solution than the pure solvents.
Want to see more full solutions like this?
Chapter 13 Solutions
MAST F/ CHEM: THE CENTRAL SCI CODE ALON
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY