Advanced Engineering Mathematics
Advanced Engineering Mathematics
6th Edition
ISBN: 9781284105902
Author: Dennis G. Zill
Publisher: Jones & Bartlett Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 1CR
To determine

The product solutions of the given equation.

Expert Solution & Answer
Check Mark

Answer to Problem 1CR

When λ=0 the product solution is u(x,y)=0_ and when λ0 the product solution is u(x,y)=Aeλxyλ_.

Explanation of Solution

Given:

The equation is 2uxy=u.

Calculation:

The given equation is as follows.

2uxy=u                                                                                                                   (1)

Consider the solution of the equation as given below.

u(x,y)=X(x)+Y(y)                                                                                            (2)

Separate the variables of the above equation.

XX=λandYY=λ

The equation of the variable X is given below.

X+λX=0                                                                                                             (3)

The equation of the variable Y is given below.

Y+Yλ=0                                                                                                                 (4)

The solution of the equations can be obtained for various cases considering the value of λ to be strictly zero and non zero.

When the value of λ is zero, substitute λ=0 in equation (3).

X=0

The general solution of the above equation can be calculated as follows.

X(x)=C                                                                                                                  (5)

Substitute λ=0 in equation (4).

Y=0

The general solution of the above equation is as follows.

Y(y)=D                                                                                                                  (6)

Substitute the value of X(x) from equation (5) and the value of Y(y) from equation (6) in equation (2).

u(x,y)=CD=A                                                                                                       (7)

When the value of λ is not equal to zero.

The general solution of the equation (3) is as follows.

X(x)=c1eλx                                                                                                           (8)

The general solution of the equation (4) is as follows.

Y(y)=c2eyλ                                                                                                            (9)

Substitute the value of X(x) from equation (8) and the value of Y(y) from equation (9) in equation (2).

u(x,y)=c1c2eyλeλx

Rewrite the term c1c2=A in the above equation to obtain the solution of the given equation.

u(x,y)=Aeλxyλ

Thus, when λ=0 the product solution is u(x,y)=0_ and when λ0, the product solution is u(x,y)=Aeλxyλ_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. (a) State the Residue Theorem. Your answer should include all the conditions required for the theorem to hold. (4 marks) (b) Let y be the square contour with vertices at -3, -3i, 3 and 3i, described in the anti-clockwise direction. Evaluate に dz. You must check all of the conditions of any results that you use. (5 marks) (c) Evaluate L You must check all of the conditions of any results that you use. ཙ x sin(Tx) x²+2x+5 da. (11 marks)
3. (a) Lety: [a, b] C be a contour. Let L(y) denote the length of y. Give a formula for L(y). (1 mark) (b) Let UCC be open. Let f: U→C be continuous. Let y: [a,b] → U be a contour. Suppose there exists a finite real number M such that |f(z)| < M for all z in the image of y. Prove that < ||, f(z)dz| ≤ ML(y). (3 marks) (c) State and prove Liouville's theorem. You may use Cauchy's integral formula without proof. (d) Let R0. Let w € C. Let (10 marks) U = { z Є C : | z − w| < R} . Let f UC be a holomorphic function such that 0 < |ƒ(w)| < |f(z)| for all z Є U. Show, using the local maximum modulus principle, that f is constant. (6 marks)
3. (a) Let A be an algebra. Define the notion of an A-module M. When is a module M a simple module? (b) State and prove Schur's Lemma for simple modules. (c) Let AM(K) and M = K" the natural A-module. (i) Show that M is a simple K-module. (ii) Prove that if ƒ € Endд(M) then ƒ can be written as f(m) = am, where a is a matrix in the centre of M, (K). [Recall that the centre, Z(M,(K)) == {a Mn(K) | ab M,,(K)}.] = ba for all bЄ (iii) Explain briefly why this means End₁(M) K, assuming that Z(M,,(K))~ K as K-algebras. Is this consistent with Schur's lemma?

Chapter 13 Solutions

Advanced Engineering Mathematics

Ch. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16ECh. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 30ECh. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.2 - Prob. 1ECh. 13.2 - Prob. 2ECh. 13.2 - Prob. 3ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.3 - Prob. 1ECh. 13.3 - Prob. 2ECh. 13.3 - Prob. 3ECh. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.4 - Prob. 1ECh. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Prob. 5ECh. 13.4 - Prob. 6ECh. 13.4 - Prob. 7ECh. 13.4 - Prob. 8ECh. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Prob. 11ECh. 13.4 - Prob. 12ECh. 13.4 - Prob. 13ECh. 13.4 - Prob. 15ECh. 13.4 - Prob. 16ECh. 13.4 - Prob. 17ECh. 13.4 - Prob. 18ECh. 13.4 - Prob. 23ECh. 13.5 - Prob. 1ECh. 13.5 - Prob. 2ECh. 13.5 - Prob. 3ECh. 13.5 - Prob. 4ECh. 13.5 - Prob. 5ECh. 13.5 - Prob. 6ECh. 13.5 - Prob. 7ECh. 13.5 - Prob. 8ECh. 13.5 - Prob. 9ECh. 13.5 - Prob. 10ECh. 13.5 - Prob. 11ECh. 13.5 - Prob. 12ECh. 13.5 - Prob. 13ECh. 13.5 - Prob. 14ECh. 13.5 - Prob. 15ECh. 13.5 - Prob. 16ECh. 13.5 - Prob. 17ECh. 13.5 - Prob. 22ECh. 13.6 - Prob. 1ECh. 13.6 - Prob. 2ECh. 13.6 - Prob. 5ECh. 13.6 - Prob. 6ECh. 13.6 - Prob. 7ECh. 13.6 - Prob. 8ECh. 13.6 - Prob. 9ECh. 13.6 - Prob. 10ECh. 13.6 - Prob. 11ECh. 13.6 - Prob. 12ECh. 13.6 - Prob. 13ECh. 13.6 - Prob. 14ECh. 13.6 - Prob. 15ECh. 13.6 - Prob. 16ECh. 13.6 - Prob. 17ECh. 13.6 - Prob. 18ECh. 13.6 - Prob. 19ECh. 13.6 - Prob. 20ECh. 13.7 - Prob. 1ECh. 13.7 - Prob. 2ECh. 13.7 - Prob. 3ECh. 13.7 - Prob. 4ECh. 13.7 - Prob. 5ECh. 13.7 - Prob. 7ECh. 13.7 - Prob. 8ECh. 13.7 - Prob. 9ECh. 13.8 - Prob. 1ECh. 13.8 - Prob. 2ECh. 13.8 - Prob. 3ECh. 13.8 - Prob. 4ECh. 13 - Prob. 1CRCh. 13 - Prob. 3CRCh. 13 - Prob. 4CRCh. 13 - Prob. 5CRCh. 13 - Prob. 6CRCh. 13 - Prob. 7CRCh. 13 - Prob. 8CRCh. 13 - Prob. 9CRCh. 13 - Prob. 10CRCh. 13 - Prob. 11CRCh. 13 - Prob. 12CRCh. 13 - Prob. 13CRCh. 13 - Prob. 14CRCh. 13 - Prob. 15CRCh. 13 - Prob. 16CRCh. 13 - Prob. 17CRCh. 13 - Prob. 18CRCh. 13 - Prob. 19CRCh. 13 - Prob. 20CR
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
03 - The Cartesian coordinate system; Author: Technion;https://www.youtube.com/watch?v=hOgKEplCx5E;License: Standard YouTube License, CC-BY
What is the Cartesian Coordinate System? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=mgx0kT5UbKk;License: Standard YouTube License, CC-BY