ENGINEERING FUNDAMENTALS
ENGINEERING FUNDAMENTALS
6th Edition
ISBN: 9781337705011
Author: MOAVENI
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 13, Problem 19P
To determine

Find the amount of natural gas required in ft3 and lbm for generating for electricity for each year.

Expert Solution & Answer
Check Mark

Answer to Problem 19P

The amount of natural gas required in ft3 and lbm for generating for electricity for each year is calculated and tabulated in Table 1.

Explanation of Solution

Given data:

Refer to problem 13-19 accompanying table in the textbook.

The average efficiency of the power plant is 35%.

The heating value of the natural gas is 1000Btuft3(22000Btulbm).

Formula used:

Formula to calculate the power plant efficiency is,

Powerplanteffeicency=EnergygeneratedEnergyinputfromfuel

Rearrange the equation,

Energyinputfromfuel=Energygeneratedpowerplanteffeicency (1)

Convert Btu to lbm,

1Btu=122000lbm[22000Btulbm=1]=4.5454×105lbm (2)

Convert lbm to ft3,

1000Btuft3=22000Btulbm10001ft3=220001lbm1ft3=221lbm1lbm=22ft3 (3)

The value of the 1Btus is,

1Btus=1.055kW (4)

Convert 1 hr into seconds,

1hr=3600s

Rearrange the equation,

1s=13600hr (5)

Substitute equation (5) in equation (4),

1Btu13600hr=1.055kW1Btu=1.0553600kWhr1Btu=2.93×104kWhr

Rearrange the equation,

1kWhr=12.93×104Btu=3412.96Btu

Calculation:

Converting the given data from kWh to Btu:

Substitute 3412.96Btu for 1kWhr in 346.2399×109kWhr for the year 1980,

346.2399×109kWhr=(346.2399×109)(3412.96Btu)=1.181702929×1015Btu=1181702.929×109Btu

Substitute 3412.96Btu for 1kWhr in 372.7652×109kWhr for the year 1990,

372.7652×109kWhr=(372.7652×109)(3412.96Btu)=1.272232717×1015Btu=1272232.717×109Btu

Substitute 3412.96Btu for 1kWhr in 601.0382×109kWhr for the year 2000,

601.0382×109kWhr=(601.0382×109)(3412.96Btu)=2.051319335×1015Btu=2051319.335×109Btu

Substitute 3412.96Btu for 1kWhr in 751.8189×109kWhr for the year 2005,

751.8189×109kWhr=(751.8189×109kWhr)(3412.96Btu)=2.565927833×1015Btu=2565927.833×109Btu

Substitute 3412.96Btu for 1kWhr in 773.8234×109kWhr for the year 2010,

773.8234×109kWhr=(773.8234×109)(3412.96Btu)=2.641028311×1015Btu=2641028.311×109Btu

Substitute 3412.96Btu for 1kWhr in 1102.762×109kWhr for the year 2020,

1102.762×109kWhr=(1102.762×109)(3412.96Btu)=3.763682596×1015Btu=3763682.596×109Btu

Substitute 3412.96Btu for 1kWhr in 992.7706×109kWhr for the year 2030,

992.7706×109kWhr=(992.7706×109)(3412.96Btu)=3.388286347×1015Btu=3388286.347×109Btu

Now find the energy input fuel for each year in Btu for natural gas:

Substitute 1181702.929×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel in 1980,

Energyinputfromfuel=1181702.929×109Btu0.35=3.376294083×1015BtuEnergyinputfromfuel=3376294.083×109Btu

Substitute 1272232.717×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 1990,

Energyinputfromfuel=1272232.717×109Btu0.35=3.63495062×1015BtuEnergyinputfromfuel=3634950.62×109Btu

Substitute 2051319.335×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2000,

Energyinputfromfuel=2051319.335×109Btu0.35=5.860912386×1015BtuEnergyinputfromfuel=5860912.386×109Btu

Substitute 2565927.833×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2005,

Energyinputfromfuel=2565927.833×109Btu0.35=7.33122238×1015BtuEnergyinputfromfuel=7331222.38×109Btu

Substitute 2641028.311×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2010,

Energyinputfromfuel=2641028.311×109Btu0.35=7.545795174×1015BtuEnergyinputfromfuel=7545795.174×109Btu

Substitute 3763682.596×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2020,

Energyinputfromfuel=3763682.596×109Btu0.35=1.075337885×1016BtuEnergyinputfromfuel=10753378.85×109Btu

Substitute 3388326.347×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2030,

Energyinputfromfuel=3388286.347×109Btu0.35=9680818.134×109Btu

Now convert Btu to lbm as follows by using the relation 1Btu=4.5454×105lbm,

Substitute 4.5454×105lbm for 1 Btu in 3376294.083×109Btu for the year 1980,

3376294.083×109Btu=(3376294.083×109)(4.5454×105lbm)=1.5346607×1011lbm1.53×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 3634950.62×109Btu for the year 1990,

3634950.62×109Btu=(3634950.62×109)(4.5454×105lbm)=1.652230×1011lbm1.65×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 5860912.386×109Btu for the year 2000,

5860912.386×109Btu=(5860912.386×109)(4.5454×105lbm)=2.664019×1011lbm2.66×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 7331222.38×109Btu for the year 2005,

7331222.38×109Btu=(7331222.38×109)(4.5454×105lbm)=3.3323×1011lbm3.33×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 7545795.174×109Btu for the year 2010,

7545795.174×109Btu=(7545795.174×109)(4.5454×105lbm)=3.429865×1011lbm3.43×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 10753378.85×109Btu for the year 2020,

10753378.85×109Btu=(10753378.85×109)(4.5454×105lbm)=4.88784×1011lbm4.89×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 9680818.134×109Btu for the year 2030,

9680818.134×109Btu=(9680818.134×109)(4.5454×105lbm)=4.4003190×1011lbm4.40×1011lbm

Now convert Form lbm to ft3 by using the relation 1lbm=22ft3 as follows,

Substitute 22ft3 for 1 lbm in 1.5346607×1011lbm for the year 1980,

1.5346607×1011lbm=(1.5346607×1011)(22ft3)=3.37625×1012ft33.38×1012ft3

Substitute 22ft3 for 1 lbm in 1.652230×1012lbm for the year 1990,

1.652230×1011lbm=(1.652230×1011)(22ft3)=3.6354906×1012ft33.63×1012ft3

Substitute 22ft3 for 1 lbm in 2.664019×1012lbm for the year 2000,

2.664019×1011lbm=(2.664019×1011)(22ft3)=5.8608418×1012ft35.86×1012ft3

Substitute 22ft3 for 1 lbm in 3.33233×1010lbm for the year 2005,

3.33233×1011lbm=(3.33233×1011)(22ft3)=7.331126×1012ft37.33×1012ft3

Substitute 22ft3 for 1 lbm in 3.429865×1011lbm for the year 2010,

3.429865×1011lbm=(3.429865×1011)(22ft3)=7.545703×1012ft37.55×1012ft3

Substitute 22ft3 for 1 lbm in 4.88784×1011lbm for the year 2020,

4.88784×1011lbm=(4.88784×1011)(22ft3)=1.0753358×1013ft31.08×1013ft3

Substitute 22ft3 for 1 lbm in 4.400319×1011lbm for the year 2030,

4.400319×1011lbm=(4.400319×1011)(22ft3)=9.6807018×1012ft39.68×1012ft3

Therefore, the amount of natural gas in ft3 and lbm for generating electricity for each year required is tabulated as in Table 1 with approximately rounded values for amount of natural gas needed in lbm and amount of natural gas needed in ft3.

ENGINEERING FUNDAMENTALS, Chapter 13, Problem 19P

Conclusion:

Hence, the amount of natural gas in ft3 and lbm for generating electricity for each year has been calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. For the foundation shown below: Qapp = 60 kips (Load obtained from structural engineer) 1.5 ft G.W.T. 3 ft Poorly Graded Sand (SP): Ym 115 pcf (above G.W.T.) Ysat 125 pcf (below G.W.T.) c' = 0, ' = 35° K Square footing, 4' x 4' Foundation Dimension Information: 1-ft x 1-ft square concrete column. 1-ft thick "foot" flanges. Yconc=150 pcf *Assume weight of reinforcing steel included in unit weight of concrete. *Assume compacted backfill weighs the same as in-situ soil. Assume this foundation is being designed for a warehouse that had a thorough preliminary soil exploration. Using the general bearing capacity equation: a. Calculate the gross applied bearing pressure, the gross ultimate bearing pressure, and determine if the foundation system is safe using a gross bearing capacity ASD approach. Please include the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table in your bearing capacity…
٢٥ ٠٥:٤٠١٠ 2025 ChatGPT VivaCut Onet Puzzle مسلم X Excel JPG I❤> PDF Copilot Chat Bot PDF2IMG iLovePDF NokoPrint O.O StudyX ☑ W CapCut Candy Crush DeepSeek Word ☐ Saga 啡 AcadAl ل TikTok
Refer to the figure below. Given: L = 7 m, y = 16.7 kN/m², and ø' = 30°. L L3 ση Sand γ $' D T LA L σε σε IN P Sand 1. Calculate the theoretical depth of penetration, D. (Enter your answer to three significant figures.) D= m 2. Calculate the maximum moment. (Enter your answer to three significant figures.) Mmax kN-m/m
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning