Engineering Fundamentals: An Introduction to Engineering
Engineering Fundamentals: An Introduction to Engineering
6th Edition
ISBN: 9780357112311
Author: Saeed Moaveni
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 13, Problem 17P
To determine

Find the amount of coal (in kg) required for generating for each year.

Expert Solution & Answer
Check Mark

Answer to Problem 17P

The amount of coal (in kg) required for generating electricity for each year are calculated and tabulated in Table 1.

Explanation of Solution

Given data:

Refer to problem 13-17 accompanying table in the textbook, the average efficiency of the power plants is 35%.

The heating value of the coal is 7.5MJkg.

Formula used:

Formula to calculate the power plant efficiency is,

Powerplanteffeicency=EnergygeneratedEnergyinputfromfuel

Rearrange the equation,

Energyinputfromfuel=Energygeneratedpowerplanteffeicency (1)

Convert kWh to MJ,

1kWh=3.6MJ (2)

Formula to calculate the amount of coal required for generating one year is,

amountofcoalrequired=EnergyinputfromfuelHeatingvalueofthecoal (3)

Calculation:

Find the energy input from the fuel in each year:

Substitute 1161.562×109kWh for energy generated and 0.35 (35%) for power plant efficiency in equation (1) to find energy input from the fuel in 1980.

Energyinputfromfuel=1161.562×109kWh0.35=3.318748571×1012kWhEnergyinputfromfuel3318.748571×109kWh

Substitute 1594.011×109kWh for energy generated and 0.35 (35%) for power plant efficiency in equation (1) to find energy input from the fuel in 1990.

Energyinputfromfuel=1594.011×109kWh0.35=4.554317143×1012kWhEnergyinputfromfuel4554.317143×109kWh

Substitute 1966.265×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2000.

Energyinputfromfuel=1966.265×109kWh0.35=5.6179×1012kWhEnergyinputfromfuel5617.9×109kWh

Substitute 2040.913×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2005.

Energyinputfromfuel=2040.913×109kWh0.35=5.8318×1012kWhEnergyinputfromfuel5831.18×109kWh

Substitute 2217.555×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2010.

Energyinputfromfuel=2217.555×109kWh0.35=6.335871429×1012kWhEnergyinputfromfuel6335.871429×109kWh

Substitute 2504.786×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2020.

Energyinputfromfuel=2504.786×109kWh0.35=7.156531429×1012kWhEnergyinputfromfuel7156.531429×109kWh

Substitute 3380.674×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2030.

Energyinputfromfuel=3380.674×109kWh0.35=9.65906857×1012kWhEnergyinputfromfuel9659.06857×109kWh

Now convert all the values from kWh to MJ:

Substitute 3318.74857×109kWh for 1kWh in equation (2) for the year 1980,

3318.748571×109kWh=(3.6MJ)×(3318.748571×109)[1kWh=3.6MJ]=1.194749486×1013MJ=11947.49486×109MJ

Substitute 4554.317143×109kWh for 1kWh in equation (2) for the year 1990,

4554.317143×109kWh=3.6MJ×4554.317143×109 [1kWh=3.6MJ]=1.639554171×1013MJ=16395.54171×109MJ

Substitute 5617.9×109kWh for 1kWh in equation (2) for the year 2000,

5617.9×109kWh=(3.6MJ)(5617.9×109)                     [1kWh=3.6MJ]=2.022444×1013MJ=20224.44×109MJ

Substitute 5831.18×109kWh for 1kWh in equation (2) for the year 2005,

5831.18×109kWh=(3.6MJ)(5831.18×109)              [1kWh=3.6MJ]=2.0992248×1013MJ=20992.248×109MJ

Substitute 6335.871429×109kWh for 1kWh in equation (2) for the year 2010,

6335.871429×109kWh=(3.6MJ)(6335.871429×109)[1kWh=3.6MJ]=2.280913714×1013MJ=22809.13714×109MJ

Substitute 7156.531429×109kWh for 1kWh in equation (2) for the year 2020,

7156.531429×109kWh=(3.6MJ)(7156.531429×109)[1kWh=3.6MJ]=2.576351314×1013MJ=25763.51314×109MJ

Substitute 9659.068571×109kWh for 1kWh in equation (2) for the year 2030,

Engineering Fundamentals: An Introduction to Engineering, Chapter 13, Problem 17P

Now find the amount of coal required in every year:

Substitute 11947.49486×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 1980,

amountofcoalrequired=11947.49486×109MJ7.5MJkg=1.593×1012kg1.59×1012kg

Substitute 16395.54171×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 1990,

amountofcoalrequired=16395.54171×109MJ7.5MJkg=2.18607×1012kg2.19×1012kg

Substitute 20224.44×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2000,

amountofcoalrequired=20224.44×109MJ7.5MJkg=2.696592×1012kg2.7×1012kg

Substitute 20992.248×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2005,

amountofcoalrequired=20992.248×109MJ7.5MJkg=2.79896×1012kg2.8×1012kg

Substitute 22809.13714×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2010,

amountofcoalrequired=22809.13714×109MJ7.5MJkg=3.04122×1012kg3.04×1012kg

Substitute 25763.51314×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2020,

amountofcoalrequired=25763.51314×109MJ7.5MJkg=3.43514×1012kg3.44×1012kg

Substitute 34772.64686×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2030,

amountofcoalrequired=34772.64686×109MJ7.5MJkg=4.63635×1012kg4.64×1012kg

Therefore, the energy input for all years for Coal, in kWh and MJ along with coal required to produce 35% of efficiency is shown in Table 1 (with approximately rounded values).

Table 1

Energy Produced (10^9 kWh)Energy(considering efficiency) 109 kWhEnergy (considering efficiency) 109 MJAmount of coal needed in kg
1161.5623318.74857111947.494861.59E+12
1594.0114554.31714316395.541712.19E+12
1966.2655617.920224.442.70E+12
2040.9135831.1820992.2482.80E+12
2217.5556335.87142922809.137143.04E+12
2504.7867156.53142925763.513143.44E+12
3380.6749569.06857134772.646864.64E+12

Conclusion:

Hence, the amount of coal (in kg) required for generating electricity for each year has been calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. Design a storage and distribution system for the town of Waffle. The requirements are that fire protection shall be provided, the minimum water pressure at the top of the apartments is to be 240 kPa and the maximum system pressure is to be 550 kPa. The following assumptions may be used: Each of the four apartment buildings is occupied by 50 residents. Each apartment building is four stories high. Each story is 3 meters high. Each house is occupied by three residents. Average daily demand for the village is 500 Lpcd and the peak hourly demand factor is 6.2. Needed fire flow for the houses is 230 m3/h. and for apartment building is 500 m3/h, with 2 h duration. System pressure is to be provided from the elevated storage tank. Minor pressure losses in buildings may be ignored. The distribution system will not contain any loops. Assume that emergency supply (ES), fire department supply (FDS) or off peak pumping are not provided (they are all equal to zero). Provide the following…
1. The city of Ten Sleep proposes to use Crater Lake for its water supply. Water quality analysis results revealed no detectable Giardia, viruses, or Cryptosporidium in the source water (Giardia cysts <1/100 L; Viruses <1/100 L; Cryptosporidium oocysts <0.075/L). Design a disinfection system to treat 3,500 m³/d by direct filtration and chlorine dioxide (CIO2) will be used as a primary disinfectant. The filtered water has a pH of 7.5 and a temperature of 5°C. Provide the following information for your design: • Determine the total removal/inactivation required for disinfection for each pathogen group • Determine the required CT value to achieve the required inactivation for the design conditions (pH, temperature)
For the beam shown, where is the peak value of the bending moment diagram? P a. Above C b. Below B c. Above A d. Above B B
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning