College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 14CQ
A pressure cooker contains water and steam in equilibrium at a pressure greater than atmospheric pressure. How does this greater pressure increase cooking speed?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A pressure cooker boils water while keeping the container under high pressure. Why do pressure cookers cook food faster than boiling it on an open stove?
When a .22-caliber rifle is fired, the expanding gas from the burning gunpowder creates a pressure behind the bullet. This pressure causes the force that pushes the bullet through the barrel. Suppose the barrel has a length of 0.633 m and an opening whose radius is 2.67 x 10-3 m. A bullet (mass = 2.6 x 10-3 kg) has a speed of 348 m/s after passing through this barrel. Ignore friction and determine the average pressure of the expanding gas.
Water boils at 120 degree C in a pressure cooker. Explain the reason.
Chapter 13 Solutions
College Physics
Ch. 13 - What does it mean to say that two systems are in...Ch. 13 - Give an example of a physical property that varies...Ch. 13 - When a cold alcohol thermometer is placed in a hot...Ch. 13 - If you add boiling water to a cup at room...Ch. 13 - Thermal stresses caused by uneven cooling can...Ch. 13 - Water expands significantly when it freezes: a...Ch. 13 - One method at getting a tight fit, say of a metal...Ch. 13 - Does it really help to run hot water over a tight...Ch. 13 - Liquids and solids expand with increasing...Ch. 13 - Find out the human population of Earth. Is there a...
Ch. 13 - Under what circumstances would you expect a gas to...Ch. 13 - A constant-volume gas thermometer contains a fixed...Ch. 13 - How is momentum related to the pressure exerted by...Ch. 13 - A pressure cooker contains water and steam in...Ch. 13 - Why does condensation from most rapidly on the...Ch. 13 - What is the vapor pressure of solid carbon dioxide...Ch. 13 - Can carbon dioxide be liquefied at room...Ch. 13 - Oxygen cannot be liquefied at room temperature by...Ch. 13 - What is the distinction between gas and vapor?Ch. 13 - Because humidity depends only on water's vapor...Ch. 13 - Why does a beaker of 40.0C water placed in a...Ch. 13 - Why does rubbing alcohol evaporate much more...Ch. 13 - What is me Fahrenheit temperature of a person with...Ch. 13 - Frost damage to most plants occurs at temperatures...Ch. 13 - To conserve energy, room temperatures are kept at...Ch. 13 - A tungsten light bulb filament may operate a1 2900...Ch. 13 - The Surface temperature of the Sun is about 5750...Ch. 13 - One of the honest temperatures ever recorded on...Ch. 13 - (a) Suppose a cold front blows into your locale...Ch. 13 - (a) At what temperature do the Fahrenheit and...Ch. 13 - The height of the Washington Monument is measured...Ch. 13 - How much taller does me Eiffel Tower become at the...Ch. 13 - What is the change in length of a 3.00mlong column...Ch. 13 - How large an expansion gap should be left between...Ch. 13 - You are looking to purchase a small piece of land...Ch. 13 - Global warming will produce rising sea levels...Ch. 13 - Show that 60.0L of gasoline originally at 15.0C...Ch. 13 - (a) Suppose a meter Stick made of steel and one...Ch. 13 - (a) If a 500mL glass beaker is filled to the brim...Ch. 13 - Most automobiles have a coolant reservoir to catch...Ch. 13 - A physicist makes a cup of instant coffee and...Ch. 13 - (a) The density of water at 0C is very nearly...Ch. 13 - Show that 3, by calculating the change in volume V...Ch. 13 - The gauge pressure in your car tires is...Ch. 13 - Convert an absolute pressure of 7.00105N/m2 to...Ch. 13 - Suppose a gasfilled incandescent light bulb is...Ch. 13 - Large helium-filled balloons are used to lift...Ch. 13 - Confirm mat the units of nRT are those of energy...Ch. 13 - In the text, it was shown that N/V=2.681025m3 for...Ch. 13 - Calculate the number of moles in me 2.00L volume...Ch. 13 - An airplane passenger has 100cm3 of air in his...Ch. 13 - (a) What is me 1imlume (in km3) of Avogadro’s...Ch. 13 - An expensive vacuum System can achieve a pressure...Ch. 13 - The number density of gas atoms at a certain...Ch. 13 - A bicycle tire has a pressure of 7.00105N/m2 at a...Ch. 13 - A high—pressure gas cylinder contains 50.13L of...Ch. 13 - Find the number of moles in 2.00L of gas at 35.0C...Ch. 13 - Calculate the depth to which Avogadro's number of...Ch. 13 - (a) What is me gauge pressure in a 25.0C car tire...Ch. 13 - (a) In the deep space between galaxies, me density...Ch. 13 - Some incandescent light bulbs are filled with...Ch. 13 - Average atomic and molecular speeds (vrms) are...Ch. 13 - (a) What is the average kinetic energy in joules...Ch. 13 - The escape velocity of any object from Earth is...Ch. 13 - The escape velocity from the Moon is much smaller...Ch. 13 - Nuclear fusion, the energy source at the Sun,...Ch. 13 - Suppose that the average velocity (vrms) of carbon...Ch. 13 - Hydrogen molecules (molecular mass is equal to...Ch. 13 - Much of The 935 near the Sun is atomic hydrogen....Ch. 13 - There are two important isotopes of uranium 235U...Ch. 13 - Dry air is 78.1% nitrogen. What is the partial...Ch. 13 - (a) What is me vapor pressure of water at 20.0C ?...Ch. 13 - Pressure cookers increase cooking speed by raising...Ch. 13 - (a) At what temperature does water boil at an...Ch. 13 - What is the atmospheric pressure on top of Mt....Ch. 13 - At a spot in the high Andes, water boils at 80.0C,...Ch. 13 - What is the relative humidity on a 25.0C day when...Ch. 13 - What is the density of water vapor in g/m3 on a...Ch. 13 - A deepsea diver should breathe a gas mixture that...Ch. 13 - The vapor pressure of water at 40.0C is...Ch. 13 - Air in human lungs has a temperature of 37.0C and...Ch. 13 - If the relative humidity is 90.0% on a muggy...Ch. 13 - Late on an autumn day, the relative humidity is...Ch. 13 - Atmospheric pressure amp Mt. Everest is...Ch. 13 - What is the dew point (the temperature at which...Ch. 13 - On a certain day the temperature is 25.0C and the...Ch. 13 - Integrated Concepts The boiling point of water...Ch. 13 - Integrated Concepts (a) At what depth in fresh...Ch. 13 - Integrated Concepts To get an idea of the small...Ch. 13 - Integrated Concepts If you want to cook in water...Ch. 13 - Unreasonable Results (a) How many moles per cubic...Ch. 13 - Unreasonable Results (a) An automobile mechanic...Ch. 13 - Unreasonable Results The temperature inside a...Ch. 13 - Unreasonable Results Suppose the relative humidity...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
A student has briefly connected a wire across the terminals of a battery until the wire feels warm. The student...
Tutorials in Introductory Physics
42. (II) A box is given a push so that it slides across the floor. How far will it go, given that the coefficie...
Physics: Principles with Applications
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two cylinders A and B at the same temperature contain the same quantity of the same kind of gas. Cylinder A has three times the volume of cylinder B. What can you conclude about the pressures the gases exert? (a) We can conclude nothing about the pressures. (b) The pressure in A is three times the pressure in B. (c) The pressures must be equal. (d) The pressure in A must be one-third the pressure in B.arrow_forwardA fire breaks out and increases the Kelvin temperature of a cylinder of compressed gas by a factor of 1.2. What is the final pressure of the gas relative to its initial pressure?arrow_forwardA cylinder that has a 40.0-cm radius and is 50.0 cm deep is filled with air at 20.0C and 1.00 atm (Fig. P10.74a). A 20.0-kg piston is now lowered into the cylinder, compressing the air trapped inside as it takes equilibrium height hi (Fig. P16.74b). Finally, a 25.0-kg dog stands on the piston, further compressing the air, which remains at 20C (Fig. P16.74c). (a) How far down (h) does the piston move when the dog steps onto it? (b) To what temperature should the gas be warmed to raise the piston and dog back to hi?arrow_forward
- Review. This problem is a continuation of Problem 16.29 in Chapter 16. A hot-air balloon consists of an envelope of constant volume 400 m3. Not including the air inside, the balloon and cargo have mass 200 kg. The air outside and originally inside is a diatomic ideal gas at 10.0C and 101 kPa, with density 1.25 kg/m3. A propane burner at the center of the spherical envelope injects energy into the air inside. The air inside stays at constant pressure. Hot air, at just the temperature required to make the balloon lift off, starts to fill the envelope at its closed top, rapidly enough so that negligible energy flows by heat to the cool air below it or out through the wall of the balloon. Air at 10C leaves through an opening at the bottom of the envelope until the whole balloon is filled with hot air at uniform temperature. Then the burner is shut off and the balloon rises from the ground. (a) Evaluate the quantity of energy the burner must transfer to the air in the balloon. (b) The heat value of propanethe internal energy released by burning each kilogramis 50.3 MJ/kg. What mass of propane must be burned?arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardReview. This problem is a continuation of Problem 39 in Chapter 19. A hot-air balloon consists of an envelope of constant volume 400 m3. Not including tire air inside, the balloon and cargo have mass 200 kg. The air outside and originally inside is a diatomic ideal gas at 10.0C and 101 kPa, with density 1.25 kg/m3. A propane burner at the center of the spherical envelope injects energy into the air inside. The air inside stays at constant pressure. Hot air, at just the temperature required to make the balloon lift off, starts to fill the envelope at its closed top, rapidly enough so that negligible energy flows by heat to the cool air below it or out through the wall of the balloon. Air at 10C leaves through an opening at the bottom of the envelope until the whole balloon is filled with hot air at uniform temperature. Then the burner is shut off and the balloon rises from the ground. (a) Evaluate the quantity of energy the burner must transfer to the air in the balloon. (b) The heat value of propanethe internal energy released by burning each kilogramis 50.3 MJ/kg. What mass of propane must be burned?arrow_forward
- A vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forwardWhen a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forward
- Consider the piston cylinder apparatus shown in Figure P20.81. The bottom of the cylinder contains 2.00 kg of water at just under 100.0c. The cylinder has a radius of r = 7.50 cm. The piston of mass m = 3.00 kg sits on the surface of the water. An electric heater in the cylinder base transfers energy into the water at a rate of 100 W. Assume the cylinder is much taller than shown in the figure, so we dont need to be concerned about the piston reaching the top of the cylinder. (a) Once the water begins boiling, how fast is the piston rising? Model the steam as an ideal gas. (b) After the water has completely turned to steam and the heater continues to transfer energy to the steam at the same rate, how fast is the piston rising?arrow_forwardA rubber balloon is filled with 1 L of air at 1 atm and 300 K and is then put into a cryogenic refrigerator at 100 K. The rubber remains flexible as it cools. (i) What happens to the volume of the balloon? (a) It decreases to 13L. (b) It decreases to 1/3L. (c) It is constant. (d) It increases to 3L. (e) It increases to 3 L. (ii) What happens to the pressure of the air in the balloon? (a) It decreases to 13atm. (b) It decreases to 1/3atm. (c) It is constant. (d) It increases to 3atm. (e) It increases to 3 atm.arrow_forwardThe pressure gauge on a cylinder of gas registers the gauge pressure, which is the difference between the interior pressure and the exterior pressure P0. Lets call the gauge pressure Pg. When the cylinder is full, the mass of the gas in it is mi at a gauge pressure of Pgi. Assuming the temperature of the cylinder remains constant, show that the mass of the gas remaining in the cylinder when the pressure reading is Pgf is given by mf=mi(Pgf+P0Pgi+P0)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY