Student Solutions Manual to accompany Atkins' Physical Chemistry 11th  edition
Student Solutions Manual to accompany Atkins' Physical Chemistry 11th edition
11th Edition
ISBN: 9780198807773
Author: ATKINS
Publisher: Oxford University Press
Question
Book Icon
Chapter 13, Problem 13B.4P
Interpretation Introduction

Interpretation:

The temperature at which the value of q is 10 according to the integral approximation has to be estimated.  The exact partition function at that temperature has to be calculated.

Concept introduction:

Statistical thermodynamics is used to describe all possible configurations in a system at given physical quantities such as pressure, temperature and number of particles in the system.  An important quantity in thermodynamics is partition function that is represented as,

  q=igieεi/kT

Where,

  • gi represents the degeneracy.
  • εi represents the energy of ith microstate.
  • k represents the Boltzmann constant with value 1.38×1023J/K.
  • T represents the temperature (K).

It is also called as canonical ensemble partition function.

Expert Solution & Answer
Check Mark

Answer to Problem 13B.4P

The temperature at which the value of q is 10 according to the integral approximation is 1.356×103K_.

The exact partition function at the calculated temperature is 3.0655_.

Explanation of Solution

The equation for a translational partition function for one-dimensional box is shown below.

    qT=V(2πmkT)3/2h3        (1)

Where,

  • qT is the translational partition function.
  • V is the volume.
  • m is the mass.
  • k is the Boltzmann constant.
  • T is the temperature.
  • h is the Planck’s constant.

In order to estimate temperature, equation (1) is modified as shown below.

    qT=V(2πmkT)3/2h3qTh3=V(2πmkT)3/2(qTh3)2/3=(V(2πmkT)3/2)2/3(qTh3)2/3=V2/3×2πmkT

Simplify the above equation.

    2πmkT=(qTh3)2/3V2/3T=(qTV)2/3h22πmk

Therefore, the temperature is calculated by using the formula shown below.

    T=h22πmk(qTV)2/3        (2)

The value of Planck’s constant is 6.626×1034Js.

The value of Boltzmann constant is 1.38×1023JK1.

The value of translational partition function is 10.

The mass of hydrogen atom is 1.6735×1027kg.

The side of a box is 100nm.

The conversion of nm into m is done as shown below.

    1nm=109m

Therefore, the conversion of 100nm into m is done as shown below.

    100nm=100×109m=107m

The volume of a one-dimensional box is calculated by the formula shown below.

    Volumeofabox=(Side)3        (3)

Substitute the value of side in equation (3) to calculate the volume of a box.

    Volumeofabox=(107m)3=1×1021m3

The volume of a box is 1×1021m3.

Also,

  1J=1kgm2s21kg=1Jm2s2

Substitute the values of qT, V, m, k and h in equation (2) to calculate the temperature.

    T=(6.626×1034Js)22×3.14×1.6735×1027kg×1.38×1023JK1(101×1021m3)2/3=4.390×1067J2s22×3.14×1.6735×1027Jm2s2×1.38×1023JK1×4.6341.032×1014m2=2.034×10661.50×1063K=1.356×103K_

Therefore, the temperature at which the value of q is 10 according to the integral approximation is 1.356×103K_.

The one-dimensional partition is expressed by the formula shown below.

    qT=n=1e(n21)βh28mX2        (4)

The equation (4) is modified as shown below.

    qT=n=1e(n21)h28mkTX2        (5)

Now, the value of h28mkTX2 is calculated as shown below.

Substitute the values of X=100nm=107m, T, m, k and h in the above formula.

    h28mkTX2=(6.626×1034Js)28×1.6735×1027Jm2s2×1.38×1023JK1×1.356×103K×(107m)2=4.390×10672.505×1066=0.175

Substitute the value of h28mkTX2 in equation (5).

    qT=n=1e0.175(n21)        (6)

Substitute the value of n=0 in equation (6) to calculate the value of partition function.

    qT=e0.175((0)21)qT=e0.175×1=e0.175=1.191

Similarly, substitute the value of n=1 in equation (6) to calculate the value of partition function.

    qT=e0.175((1)21)qT=e0.175×0=e0=1

Substitute the value of n=2 in equation (6) to calculate the value of partition function.

    qT=e0.175((2)21)qT=e0.175×3=e0.525=0.60

Substitute the value of n=3 in equation (6) to calculate the value of partition function.

    qT=e0.175((3)21)qT=e0.175×8=e1.4=0.25

Substitute the value of n=4 in equation (6) to calculate the value of partition function.

    qT=e0.175((4)21)qT=e0.175×15=e2.625=0.0072

Substitute the value of n=5 in equation (6) to calculate the value of partition function.

    qT=e0.175((5)21)qT=e0.175×24=e4.2=0.0149

Substitute the value of n=6 in equation (6) to calculate the value of partition function.

    qT=e0.175((6)21)qT=e0.175×35=e6.125=2.187×103

Substitute the value of n=7 in equation (6) to calculate the value of partition function.

    qT=e0.175((7)21)qT=e0.175×48=e8.4=2.248×104

Substitute the value of n=8 in equation (6) to calculate the value of partition function.

    qT=e0.175((8)21)qT=e0.175×63=e11.025=1.628×105

Substitute the value of n=9 in equation (6) to calculate the value of partition function.

    qT=e0.175((9)21)qT=e0.175×80=e14=8.315×107

Substitute the value of n=10 in equation (6) to calculate the value of partition function.

    qT=e0.175((10)21)qT=e0.175×99=e17.325=2.99×108

Therefore, the values of partition function at different values of n are shown below.

nqT
01.191
11
20.60
30.25
40.0072
50.0149
62.187×103
72.248×104
81.628×105
98.315×107
102.99×108

The value of partition function is calculated as shown below.

    qT=(1.191+1+0.60+0.25+0.0072+0.0149+2.187×103+2.248×104+1.628×105+8.315×107+2.99×108)=3.0655_

Therefore, the exact partition function at the calculated temperature is 3.0655_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
7. Use Pauling's electronegativity values (Table 1.7) and Ketelaar triangle (Fig. 2.28) to classify bonding in: (3 points) a) CIF3 b) ZnCl2 c) PbS
7. What is the IUPAC name of the following compound? A) (R)-1-oxo-2-butanol C) (R)-2-hydroxybutanal E) (S)-1-formyl-1-propanol B) (S)-1-oxo-2-butanol D) (S)-2-hydroxybutanal OH H
Cual es la formula semidesarrollada del 3-metil-1-butino?

Chapter 13 Solutions

Student Solutions Manual to accompany Atkins' Physical Chemistry 11th edition

Ch. 13 - Prob. 13A.1AECh. 13 - Prob. 13A.1BECh. 13 - Prob. 13A.2AECh. 13 - Prob. 13A.2BECh. 13 - Prob. 13A.3AECh. 13 - Prob. 13A.3BECh. 13 - Prob. 13A.4AECh. 13 - Prob. 13A.4BECh. 13 - Prob. 13A.5AECh. 13 - Prob. 13A.5BECh. 13 - Prob. 13A.6AECh. 13 - Prob. 13A.6BECh. 13 - Prob. 13A.1PCh. 13 - Prob. 13A.2PCh. 13 - Prob. 13A.4PCh. 13 - Prob. 13A.5PCh. 13 - Prob. 13A.6PCh. 13 - Prob. 13A.7PCh. 13 - Prob. 13B.1DQCh. 13 - Prob. 13B.2DQCh. 13 - Prob. 13B.3DQCh. 13 - Prob. 13B.1AECh. 13 - Prob. 13B.1BECh. 13 - Prob. 13B.2AECh. 13 - Prob. 13B.2BECh. 13 - Prob. 13B.3AECh. 13 - Prob. 13B.3BECh. 13 - Prob. 13B.4AECh. 13 - Prob. 13B.4BECh. 13 - Prob. 13B.7AECh. 13 - Prob. 13B.7BECh. 13 - Prob. 13B.8AECh. 13 - Prob. 13B.8BECh. 13 - Prob. 13B.9AECh. 13 - Prob. 13B.9BECh. 13 - Prob. 13B.10AECh. 13 - Prob. 13B.10BECh. 13 - Prob. 13B.11AECh. 13 - Prob. 13B.11BECh. 13 - Prob. 13B.12AECh. 13 - Prob. 13B.12BECh. 13 - Prob. 13B.4PCh. 13 - Prob. 13B.5PCh. 13 - Prob. 13B.6PCh. 13 - Prob. 13B.7PCh. 13 - Prob. 13B.8PCh. 13 - Prob. 13B.10PCh. 13 - Prob. 13C.1DQCh. 13 - Prob. 13C.2DQCh. 13 - Prob. 13C.1AECh. 13 - Prob. 13C.1BECh. 13 - Prob. 13C.6AECh. 13 - Prob. 13C.6BECh. 13 - Prob. 13C.7AECh. 13 - Prob. 13C.7BECh. 13 - Prob. 13C.3PCh. 13 - Prob. 13C.7PCh. 13 - Prob. 13C.8PCh. 13 - Prob. 13C.9PCh. 13 - Prob. 13D.1DQCh. 13 - Prob. 13D.2DQCh. 13 - Prob. 13D.3DQCh. 13 - Prob. 13D.4DQCh. 13 - Prob. 13D.1AECh. 13 - Prob. 13D.1BECh. 13 - Prob. 13D.1PCh. 13 - Prob. 13D.2PCh. 13 - Prob. 13E.1DQCh. 13 - Prob. 13E.2DQCh. 13 - Prob. 13E.3DQCh. 13 - Prob. 13E.4DQCh. 13 - Prob. 13E.5DQCh. 13 - Prob. 13E.6DQCh. 13 - Prob. 13E.1AECh. 13 - Prob. 13E.1BECh. 13 - Prob. 13E.2AECh. 13 - Prob. 13E.2BECh. 13 - Prob. 13E.3AECh. 13 - Prob. 13E.3BECh. 13 - Prob. 13E.4AECh. 13 - Prob. 13E.4BECh. 13 - Prob. 13E.5AECh. 13 - Prob. 13E.5BECh. 13 - Prob. 13E.6AECh. 13 - Prob. 13E.6BECh. 13 - Prob. 13E.7AECh. 13 - Prob. 13E.7BECh. 13 - Prob. 13E.8AECh. 13 - Prob. 13E.8BECh. 13 - Prob. 13E.9AECh. 13 - Prob. 13E.9BECh. 13 - Prob. 13E.1PCh. 13 - Prob. 13E.2PCh. 13 - Prob. 13E.3PCh. 13 - Prob. 13E.4PCh. 13 - Prob. 13E.7PCh. 13 - Prob. 13E.9PCh. 13 - Prob. 13E.10PCh. 13 - Prob. 13E.11PCh. 13 - Prob. 13E.14PCh. 13 - Prob. 13E.15PCh. 13 - Prob. 13E.16PCh. 13 - Prob. 13E.17PCh. 13 - Prob. 13F.1DQCh. 13 - Prob. 13F.2DQCh. 13 - Prob. 13F.3DQCh. 13 - Prob. 13F.1AECh. 13 - Prob. 13F.1BECh. 13 - Prob. 13F.2AECh. 13 - Prob. 13F.2BECh. 13 - Prob. 13F.3AECh. 13 - Prob. 13F.3BECh. 13 - Prob. 13F.3PCh. 13 - Prob. 13F.4PCh. 13 - Prob. 13F.5PCh. 13 - Prob. 13F.6PCh. 13 - Prob. 13.1IA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY