Organic Chemistry
Organic Chemistry
8th Edition
ISBN: 9781305580350
Author: William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher: Cengage Learning
Question
Book Icon
Chapter 13, Problem 13.9P

(a)

Interpretation Introduction

Interpretation:

For the given each molecule the index hydrogen deficiency value has to be calculated.

Concept introduction:

The Index of Hydrogen Deficiency (IHD) is otherwise called as units of unsaturation. IHD gives the count of number of Hydrogen molecules that are needed to add to a structure in order to form the corresponding saturated acyclic compound. Hence, the count of number of rings and multiple bonds seen in the structure are taken in consideration.

There are two ways of using IHD

  1. 1) From a drawn structure: The number of rings and π bonds present are counted. The π bonds containing heteroatom (such as Oxygen, Nitrogen etc.,) are counted the same way as all Carbon bonds are counted.
  2. 2) From the molecular formula: The IHD can also be given from molecular formula. The following generic molecular formula CcHhNnOoXx , then IHD equation can be derived ,

    IHD=0.5×[2c+2-h-x+n]

HDI= ( 2C+2+N-H-X)2

indicatesnumberofcarbonindicatesnumberofnitrogenindicatesnumberofhydrogenindicatesnumberofhalogen

(a)

Expert Solution
Check Mark

Explanation of Solution

Let us consider the Aspirin molecule,

It is structural formula is C9H8O4

We calculate the IHD as follows:

HDI( 2C+2+N-H-X)2=2×9+2+0-8-02=6_

Therfore, the given asprin molecule HDI value is Six6.

(b)

Interpretation Introduction

Interpretation:

For the given each molecule the index hydrogen deficiency has to be calculated.

Concept introduction:

The Index of Hydrogen Deficiency (IHD) is otherwise called as units of unsaturation. IHD gives the count of number of Hydrogen molecules that are needed to add to a structure in order to form the corresponding saturated acyclic compound. Hence, the count of number of rings and multiple bonds seen in the structure are taken in consideration.

There are two ways of using IHD

  1. 1) From a drawn structure: The number of rings and π bonds present are counted. The π bonds containing heteroatom (such as Oxygen, Nitrogen etc.,) are counted the same way as all Carbon bonds are counted.
  2. 2) From the molecular formula: The IHD can also be given from molecular formula. The following generic molecular formula CcHhNnOoXx , then IHD equation can be derived ,

    IHD=0.5×[2c+2-h-x+n]

HDI= ( 2C+2+N-H-X)2

indicatesnumberofcarbonindicatesnumberofnitrogenindicatesnumberofhydrogenindicatesnumberofhalogen

(b)

Expert Solution
Check Mark

Explanation of Solution

Let us consider the Ascorbic acid (vitamin C),

It is structural formula is C6H8O6

We calculate the IHD as follows:

HDI( 2C+2+N-H-X)2=2×6+2+0-8-02=3

Therfore, the given Ascorbic acid (vitamin C), HDI value is  3_.

(c)

Interpretation Introduction

Interpretation:

For the given each molecule the index hydrogen deficiency has to be calculated.

Concept introduction:

The Index of Hydrogen Deficiency (IHD) is otherwise called as units of unsaturation. IHD gives the count of number of Hydrogen molecules that are needed to add to a structure in order to form the corresponding saturated acyclic compound. Hence, the count of number of rings and multiple bonds seen in the structure are taken in consideration.

There are two ways of using IHD

  1. 1) From a drawn structure: The number of rings and π bonds present are counted. The π bonds containing heteroatom (such as Oxygen, Nitrogen etc.,) are counted the same way as all Carbon bonds are counted.
  2. 2) From the molecular formula: The IHD can also be given from molecular formula. The following generic molecular formula CcHhNnOoXx , then IHD equation can be derived ,

    IHD=0.5×[2c+2-h-x+n]

HDI= ( 2C+2+N-H-X)2

indicatesnumberofcarbonindicatesnumberofnitrogenindicatesnumberofhydrogenindicatesnumberofhalogen

(c)

Expert Solution
Check Mark

Explanation of Solution

Let us consider the pyridine,

It is structural formula is C5H5N

We calculate the IHD as follows:

HDI( 2C+2+N-H-X)2=2×5+2+1-5-02=4

Therfore, the given pyridine, HDI value is 4.

(d)

Interpretation Introduction

Interpretation:

For the given each molecule the index hydrogen deficiency has to be calculated.

Concept introduction:

The Index of Hydrogen Deficiency (IHD) is otherwise called as units of unsaturation. IHD gives the count of number of Hydrogen molecules that are needed to add to a structure in order to form the corresponding saturated acyclic compound. Hence, the count of number of rings and multiple bonds seen in the structure are taken in consideration.

There are two ways of using IHD

  1. 1) From a drawn structure: The number of rings and π bonds present are counted. The π bonds containing heteroatom (such as Oxygen, Nitrogen etc.,) are counted the same way as all Carbon bonds are counted.
  2. 2) From the molecular formula: The IHD can also be given from molecular formula. The following generic molecular formula CcHhNnOoXx , then IHD equation can be derived ,

    IHD=0.5×[2c+2-h-x+n]

HDI= ( 2C+2+N-H-X)2

indicatesnumberofcarbonindicatesnumberofnitrogenindicatesnumberofhydrogenindicatesnumberofhalogen

(d)

Expert Solution
Check Mark

Explanation of Solution

Let us consider the Urea,

It is structural formula is CH4N2O

We calculate the IHD as follows:

HDI( 2C+2+N-H-X)2=2×1+2+2-4-02=1

Therfore, the given Urea molecule HDI value is one1.

(e)

Interpretation Introduction

Interpretation:

For the given each molecule the index hydrogen deficiency value has to be calculated.

Concept introduction:

The Index of Hydrogen Deficiency (IHD) is otherwise called as units of unsaturation. IHD gives the count of number of Hydrogen molecules that are needed to add to a structure in order to form the corresponding saturated acyclic compound. Hence, the count of number of rings and multiple bonds seen in the structure are taken in consideration.

There are two ways of using IHD

  1. 1) From a drawn structure: The number of rings and π bonds present are counted. The π bonds containing heteroatom (such as Oxygen, Nitrogen etc.,) are counted the same way as all Carbon bonds are counted.
  2. 2) From the molecular formula: The IHD can also be given from molecular formula. The following generic molecular formula CcHhNnOoXx , then IHD equation can be derived ,

    IHD=0.5×[2c+2-h-x+n]

HDI= ( 2C+2+N-H-X)2

indicatesnumberofcarbonindicatesnumberofnitrogenindicatesnumberofhydrogenindicatesnumberofhalogen

(e)

Expert Solution
Check Mark

Explanation of Solution

Let us consider the Cholesterol,

It is structural formula is C27H46O

We calculate the IHD as follows:

HDI( 2C+2+N-H-X)2=2×27+2+0-46-02=5

Therfore, the given Cholesterol molecule HDI value is five5_.

(f)

Interpretation Introduction

Interpretation:

For the given each molecule the index hydrogen deficiency value has to be calculated.

Concept introduction:

The Index of Hydrogen Deficiency (IHD) is otherwise called as units of unsaturation. IHD gives the count of number of Hydrogen molecules that are needed to add to a structure in order to form the corresponding saturated acyclic compound. Hence, the count of number of rings and multiple bonds seen in the structure are taken in consideration.

There are two ways of using IHD

  1. 1) From a drawn structure: The number of rings and π bonds present are counted. The π bonds containing heteroatom (such as Oxygen, Nitrogen etc.,) are counted the same way as all Carbon bonds are counted.
  2. 2) From the molecular formula: The IHD can also be given from molecular formula. The following generic molecular formula CcHhNnOoXx , then IHD equation can be derived ,

    IHD=0.5×[2c+2-h-x+n]

HDI= ( 2C+2+N-H-X)2

indicatesnumberofcarbonindicatesnumberofnitrogenindicatesnumberofhydrogenindicatesnumberofhalogen

(f)

Expert Solution
Check Mark

Explanation of Solution

Let us consider the Dopamine,

It is structural formula is C8H11NO2

We calculate the IHD as follows:

HDI( 2C+2+N-H-X)2=2×8+2+1-11-02=4

Therfore, the given Dopamine molecule HDI value is four4_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
04:43
Students have asked these similar questions
Draw the titration curve of (i) weak acid vs. strong base; (ii) weak acid vs. weakbase; (iii) diprotic acid with strong base (iii) triprotic acid with strong base.
Complete the reaction in the drawing area below by adding the major products to the right-hand side. If there won't be any products, because nothing will happen under these reaction conditions, check the box under the drawing area instead. Note: if the products contain one or more pairs of enantiomers, don't worry about drawing each enantiomer with dash and wedge bonds. Just draw one molecule to represent each pair of enantiomers, using line bonds at the chiral center. More... No reaction. my ㄖˋ + 1. Na O Me Click and drag to start drawing a structure. 2. H +
Predict the intermediate 1 and final product 2 of this organic reaction: NaOMe H+ + 1 2 H H work up You can draw 1 and 2 in any arrangement you like. Note: if either 1 or 2 consists of a pair of enantiomers, just draw one structure using line bonds instead of 3D (dash and wedge) bonds at the chiral center. Click and drag to start drawing a structure. X $ dm
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning