Concept explainers
(a)
The initial speed of the satellite.
(a)
Answer to Problem 13.70AP
The initial speed of the satellite is
Explanation of Solution
The mass of the satellite is
Formula to calculate the initial speed of the satellite is,
Here,
Substitute
Conclusion:
Therefore, the initial speed of the satellite is
(b)
The final speed of the satellite.
(b)
Answer to Problem 13.70AP
The final speed of the satellite is
Explanation of Solution
Formula to calculate the final speed of the satellite is,
Here,
Substitute
Conclusion:
Therefore, the final speed of the satellite is
(c)
The initial energy of the satellite-Earth system.
(c)
Answer to Problem 13.70AP
The initial energy of the satellite-Earth system is
Explanation of Solution
Formula to calculate the initial energy of the satellite-Earth system is,
Here,
Substitute
Conclusion:
Therefore, the initial energy of the satellite-Earth system is
(d)
The final energy of the satellite-Earth system.
(d)
Answer to Problem 13.70AP
The final energy of the satellite-Earth system is
Explanation of Solution
Formula to calculate the final energy of the satellite-Earth system is,
Substitute
Conclusion:
Therefore, the final energy of the satellite-Earth system is
(e)
The mechanical energy of the system has decreased and estimates the amount of decrease mechanical energy of the system.
(e)
Answer to Problem 13.70AP
The amount of decrease mechanical energy of the system is
Explanation of Solution
Formula to calculate the mechanical energy of the system is,
Substitute
Conclusion:
Therefore, the amount of decrease mechanical energy of the system is
(f)
What force makes the satellite’s speed increases.
(f)
Answer to Problem 13.70AP
The component of the gravitational force pulls forward on the satellite and increases the speed of satellite.
Explanation of Solution
The only forces act on the satellite is the backward force of air resistance comparatively very small in magnitude to the force of gravity. Because the spiral path of the satellite is not perpendicular to the gravitational force, one component of the gravitational force pulls forward on the satellite to do positive work and makes speed increases.
Conclusion:
Therefore, component of the gravitational force pulls forward on the satellite and increases the speed of satellite.
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers (AP Edition)
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning