Concept explainers
A 200-kg object and a 500-kg object are separated by 4.00 m. (a) Find the net gravitational force exerted by these objects on a 50.0-kg object placed midway between them. (b) At what position (other than an infinitely remote one) can the 50.0-kg object be placed so as to experience a net force of zero from the other two objects?
(a)
The net gravitational field exerted on the object.
Answer to Problem 13.3P
The net gravitational field exerted on the object is
Explanation of Solution
Given info: The mass of the first object is
The universal gravitational constant is
The third object is at the midpoint of the distance between the first object and the second object.
The formula for gravitational force is,
Here,
For first object and third object
Substitute
The force by the first object on third object is
For second object and third object
Substitute
The force by the second object on third object is
The expression for the net force on the third object is,
The direction of the forces by first and second object on the third object is opposite to each other.
Substitute
Conclusion:
Therefore, the net gravitational field exerted on the object is
(b)
The position at which the net force on the object is zero.
Answer to Problem 13.3P
The net force on the object is zero at a distance of
Explanation of Solution
Given info: The mass of the first object is
The expression for the distance of the third object from the first object is,
Here,
For first object and third object
Substitute
Substitute
For second object and third object
Substitute
The expression for the net force on the third object is,
The direction of the forces by first and second object on the third object is opposite to each other.
Substitute
Rearrange the above equation for value of
Conclusion:
Therefore, the net force on the object is zero at a distance of
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers, Volume 1
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- What is the equivalent resistance between points A and B of the network shown in the figure? A • 12 B 4.0 6.0 Ω 8.0 Ωarrow_forwardAccording to the provided information answer the question accorrding to grade 11 physics Jerry has decided to give up his part-time job for a new career, cat-burglar! Jerry loves the idea of dressing up like a cat all day and of course the chance of meeting Cat Woman! On Jerry's first "job" he figures out his escape plan. He travels 3.0 km south for 15 minutes and then 8.0 km west for 1.5 hours before reaching his house. Draw a sketch diagram of the path he took with all the appropriate labels.arrow_forwardPlease solve and answer all parts of the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning