Loose Leaf for Chemistry
Loose Leaf for Chemistry
13th Edition
ISBN: 9781260162035
Author: Raymond Chang Dr., Jason Overby Professor
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 13, Problem 13.33QP

(a)

Interpretation Introduction

Interpretation:

  1. (a) Why the rate constant of a reaction decreases with increasing activation energy has to be explained.

Concept introduction:

Arrhenius equation:

  • Arrhenius equation is a formula that represents the temperature dependence of reaction rates
  • The Arrhenius equation has to be represented as follows

k=AeEa/RT

  • Ea represents the activation energy and it’s unit is kJ/mol
  • R represents the universal gas constant and it has the value of 8.314 J/K.mol
  • T represents the absolute temperature
  • A represents the frequency factor or collision frequency
  • e represents the base of natural logarithm
  •  Arrhenius equation equation was proposed by Svante Arrhenius in 1889.

(b)

Interpretation Introduction

Interpretation:

  1. (b) Why the rate constant of a reaction decreases with increasing activation energy has to be explained.
  2. (c) Why the rate constant of a reaction increases with increasing temperature has to be explained.

Concept introduction:

Arrhenius equation:

  • Arrhenius equation is a formula that represents the temperature dependence of reaction rates
  • The Arrhenius equation has to be represented as follows

k=AeEa/RT

  • Ea represents the activation energy and it’s unit is kJ/mol
  • R represents the universal gas constant and it has the value of 8.314 J/K.mol
  • T represents the absolute temperature
  • A represents the frequency factor or collision frequency
  • e represents the base of natural logarithm
  •  Arrhenius equation equation was proposed by Svante Arrhenius in 1889.

Blurred answer
Students have asked these similar questions
This is a synthesis question.  Why is this method wrong or worse than the "correct" method?  You could do it thiss way, couldn't you?
Try: Draw the best Lewis structure showing all non-bonding electrons and all formal charges if any: (CH3)3CCNO NCO- HN3 [CH3OH2]*
What are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.

Chapter 13 Solutions

Loose Leaf for Chemistry

Ch. 13.3 - Calculate the half-life of the decomposition of...Ch. 13.3 - The reaction 2A B is second order with a rate...Ch. 13.3 - Consider the first-order reaction A B in which A...Ch. 13.3 - Consider the reaction A products. The half-life...Ch. 13.3 - Consider the first-order reaction A products. The...Ch. 13.3 - What is the initial concentration of a reactant in...Ch. 13.4 - The second-order rate constant for the...Ch. 13.4 - The first-order rate constant for the reaction of...Ch. 13.4 - What is the activation energy of a particular...Ch. 13.4 - Prob. 2RCFCh. 13.5 - The reaction between NO2 and CO to produce NO and...Ch. 13.5 - The rate law for the reaction H2 + 2IBr I2 + 2HBr...Ch. 13.5 - For the reaction between NO and O2, the following...Ch. 13.6 - Which of the following is false regarding...Ch. 13 - What is meant by the rate of a chemical reaction?...Ch. 13 - Distinguish between average rate and instantaneous...Ch. 13 - Prob. 13.3QPCh. 13 - Can you suggest two reactions that are very slow...Ch. 13 - Write the reaction rate expressions for the...Ch. 13 - Write the reaction rate expressions for the...Ch. 13 - Consider the reaction 2NO(g)+O2(g)2NO2(g) Suppose...Ch. 13 - Consider the reaction N2(g)+3H2(g)2NH3(g) Suppose...Ch. 13 - Explain what is meant by the rate law of a...Ch. 13 - What are the units for the rate constants of...Ch. 13 - Consider the zero-order reaction: A product. (a)...Ch. 13 - On which of the following properties does the rate...Ch. 13 - The rate law for the reaction...Ch. 13 - Use the data in Table 13.2 to calculate the rate...Ch. 13 - Consider the reaction A+Bproducts From the...Ch. 13 - Consider the reaction X+YZ From the following...Ch. 13 - Determine the overall orders of the reactions to...Ch. 13 - Consider the reaction AB The rate of the reaction...Ch. 13 - Cyclobutane decomposes to ethylene according to...Ch. 13 - The following gas-phase reaction was studied at...Ch. 13 - Prob. 13.21QPCh. 13 - Prob. 13.22QPCh. 13 - Prob. 13.23QPCh. 13 - Prob. 13.24QPCh. 13 - What is the half-life of a compound if 75 percent...Ch. 13 - The thermal decomposition of phosphine (PH3) into...Ch. 13 - The rate constant for the second-order reaction...Ch. 13 - The rate constant for the second-order reaction...Ch. 13 - Consider the first-order reaction A B shown here....Ch. 13 - The reaction X Y shown here follows first-order...Ch. 13 - Define activation energy. What role does...Ch. 13 - Prob. 13.32QPCh. 13 - Prob. 13.33QPCh. 13 - Prob. 13.34QPCh. 13 - Sketch a potential energy versus reaction progress...Ch. 13 - Prob. 13.36QPCh. 13 - The diagram in (a) shows the plots of ln k versus...Ch. 13 - Given the same reactant concentrations, the...Ch. 13 - Some reactions are described as parallel in that...Ch. 13 - Variation of the rate constant with temperature...Ch. 13 - For the reaction NO(g)+O3(g)NO2(g)+O2(g) the...Ch. 13 - The rate constant of a first-order reaction is...Ch. 13 - The rate constants of some reactions double with...Ch. 13 - Prob. 13.44QPCh. 13 - Consider the second-order reaction...Ch. 13 - The rate at which tree crickets chirp is 2.0 102...Ch. 13 - Prob. 13.47QPCh. 13 - What do we mean by the mechanism of a reaction?...Ch. 13 - Classify each of the following elementary steps as...Ch. 13 - Reactions can be classified as unimolecular,...Ch. 13 - Determine the molecularity and write the rate law...Ch. 13 - What is the rate-determining step of a reaction?...Ch. 13 - The equation for the combustion of ethane (C2H6)...Ch. 13 - Specify which of the following species cannot be...Ch. 13 - The rate law for the reaction...Ch. 13 - For the reaction X2 + Y + Z XY + XZ it is found...Ch. 13 - Prob. 13.57QPCh. 13 - The rate law for the reaction...Ch. 13 - How does a catalyst increase the rate of a...Ch. 13 - What are the characteristics of a catalyst?Ch. 13 - A certain reaction is known to proceed slowly at...Ch. 13 - Distinguish between homogeneous catalysis and...Ch. 13 - Prob. 13.63QPCh. 13 - The concentrations of enzymes in cells are usually...Ch. 13 - The diagram shown here represents a two-step...Ch. 13 - Consider the following mechanism for the...Ch. 13 - The following diagrams represent the progress of...Ch. 13 - Prob. 13.68QPCh. 13 - Prob. 13.69QPCh. 13 - List four factors that influence the rate of a...Ch. 13 - Prob. 13.71QPCh. 13 - Prob. 13.72QPCh. 13 - Prob. 13.73QPCh. 13 - The following data were collected for the reaction...Ch. 13 - Prob. 13.75QPCh. 13 - The rate of the reaction...Ch. 13 - Which of the following equations best describes...Ch. 13 - Prob. 13.78QPCh. 13 - The bromination of acetone is acid-catalyzed:...Ch. 13 - The decomposition of N2O to N2 and O2 is a...Ch. 13 - The reaction S2O82+2I2SO42+I2 proceeds slowly in...Ch. 13 - Prob. 13.82QPCh. 13 - The integrated rate law for the zero-order...Ch. 13 - Prob. 13.84QPCh. 13 - Prob. 13.85QPCh. 13 - The diagrams here represent the reaction A + B C...Ch. 13 - Prob. 13.87QPCh. 13 - The rate law for the reaction 2NO2 (g) N2O4(g) is...Ch. 13 - Prob. 13.89QPCh. 13 - Prob. 13.90QPCh. 13 - Briefly comment on the effect of a catalyst on...Ch. 13 - When 6 g of granulated Zn is added to a solution...Ch. 13 - Prob. 13.93QPCh. 13 - A certain first-order reaction is 35.5 percent...Ch. 13 - The decomposition of dinitrogen pentoxide has been...Ch. 13 - The thermal decomposition of N2O5 obeys...Ch. 13 - Prob. 13.97QPCh. 13 - Prob. 13.99QPCh. 13 - Prob. 13.100QPCh. 13 - Prob. 13.101QPCh. 13 - Chlorine oxide (ClO), which plays an important...Ch. 13 - Prob. 13.103QPCh. 13 - Prob. 13.104QPCh. 13 - Prob. 13.105QPCh. 13 - Prob. 13.106QPCh. 13 - Prob. 13.107QPCh. 13 - Prob. 13.108QPCh. 13 - Prob. 13.109QPCh. 13 - Thallium(I) is oxidized by cerium(IV) as follows:...Ch. 13 - Prob. 13.111QPCh. 13 - Prob. 13.112QPCh. 13 - Prob. 13.113QPCh. 13 - Prob. 13.114QPCh. 13 - Strontium-90, a radioactive isotope, is a major...Ch. 13 - Prob. 13.117QPCh. 13 - Consider the following potential energy profile...Ch. 13 - Prob. 13.119QPCh. 13 - Prob. 13.120QPCh. 13 - Prob. 13.121QPCh. 13 - Prob. 13.122QPCh. 13 - Prob. 13.123QPCh. 13 - Prob. 13.124QPCh. 13 - Polyethylene is used in many items, including...Ch. 13 - Prob. 13.126QPCh. 13 - Prob. 13.127QPCh. 13 - Prob. 13.128QPCh. 13 - Prob. 13.129QPCh. 13 - Prob. 13.130QPCh. 13 - Prob. 13.131QPCh. 13 - A gas mixture containing CH3 fragments, C2H6...Ch. 13 - Prob. 13.133QPCh. 13 - The activation energy (Ea) for the reaction...Ch. 13 - The rate constants for the first-order...Ch. 13 - Prob. 13.136QPCh. 13 - An instructor performed a lecture demonstration of...Ch. 13 - Prob. 13.138QPCh. 13 - Is the rate constant (k) of a reaction more...Ch. 13 - Prob. 13.140QPCh. 13 - Prob. 13.141QPCh. 13 - Prob. 13.142QP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning