The rate constant for the second-order reaction
is 0.80/M · s at 10°C. (a) Starting with a concentration of 0.086 M, calculate the concentration of NOBr after 22 s. (b) Calculate the half-lives when [NOBr]0 = 0.072 M and [NOBr]0 = 0.054 M.
(a)

Interpretation:
The concentration of
Concept introduction:
Rate equation for the general reaction
The rate of the reaction is proportinal to the concentration of A to the power of x, is
The rate of the reaction is proportional to the concentration of B to the power of y is
Then the rate equation becomes,
Order of this reaction is the sum of the powers to which all reactant concentrations appearing in the rate law are raised.
Answer to Problem 13.27QP
The concentration of
Explanation of Solution
The given reaction is
The reaction follows second order kinetics.
Rate constant of the given reaction is
The concentration of
For a second order reaction the relationship between concentrations of reactant and time is,
Therefore, the concentration of
(b)

Interpretation:
The half-life when
Concept introduction:
Rate equation for the general reaction
The rate of the reaction is proportinal to the concentration of A to the power of x, is
The rate of the reaction is proportional to the concentration of B to the power of y is
Then the rate equation becomes,
Order of this reaction is the sum of the powers to which all reactant concentrations appearing in the rate law are raised.
Half-life is the time required for one half of a reactant to react.
Half-life for a second order reaction is
Answer to Problem 13.27QP
The half-life when
Explanation of Solution
The given reaction is
The reaction follows second order kinetics.
Rate constant of the given reaction is
The concentration of
We know that for a second order half-life reaction and half-life of a second order reaction is dependent on initial concentration
The half-life when
Want to see more full solutions like this?
Chapter 13 Solutions
AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





