(a)
Interpretation:
The synthetic form for the given set of directions for carrying out the sequence of reactions is to be written.
Concept introduction:
The synthesis form is the balanced chemical equation that can be written in word format for carrying out the sequence of reactions with specified steps. For each synthetic step, the structures for the overall reactants, the reagents added, the overall products formed, and the required reaction conditions are to be mentioned.
The steps for writing the form of synthesis for the set of directions of reaction sequences are:
Identify the reactants, reagents, and products formed in each step from the names mentioned in the set of directions given for the reaction sequences.
The structures of reactants for the given names are to be drawn on the left side of the reaction arrow (
The reagents used are to be written above the arrow, and the reaction conditions including the solvent, temperature, pH, time of reaction, etc. are to be written below the arrow. Reagents must be written in the form in which they can be added, not as they appear in the mechanism.
If more than one sequence is combined in one step, then the reagents are numbered according to their sequence, and the reagents can be written above as well as below the arrow. For the combined step, only the product of the final step is to be drawn and the intermediate products are omitted.
The structures of the products are to be drawn on the right side of reaction arrow (
The inorganic by-products and leaving groups are often irrelevant to the synthesis and are omitted.
(b)
Interpretation:
The synthetic form for the given set of directions for carrying out the sequence of reactions is to be written.
Concept introduction:
The synthesis form is the balanced chemical equation that can be written in word format for carrying out the sequence of reactions with specified steps. For each synthetic step, the structures for the overall reactants, the reagents added, the overall products formed, and the required reaction conditions are to be mentioned.
The steps for writing the form of synthesis for the set of directions of reaction sequences are:
Identify the reactants, reagents, and products formed in each step from the names mentioned in the set of directions given for the reaction sequences.
The structures of reactants for the given names are to be drawn on the left side of the reaction arrow (
The reagents used are to be written above the arrow, and the reaction conditions including solvent, temperature, pH, time of reaction, etc. are to be written below the arrow. Reagents must be written in the form in which they can be added, not as they appear in the mechanism.
If more than one sequence is combined in one step, then the reagents are numbered according to their sequence, and the reagents can be written above as well as below the arrow. For the combined step, only the product of the final step is to be drawn and the intermediate products are omitted.
The structures of the products are to be drawn on the right side of reaction arrow (
The inorganic by-products and leaving groups are often irrelevant to the synthesis and are omitted.
(c)
Interpretation:
The synthetic form for the given set of directions for carrying out the sequence of reactions is to be written.
Concept introduction:
The synthesis form is the balanced chemical equation that can be written in word format for carrying out the sequence of reactions with specified steps. For each synthetic step, the structures for the overall reactants, the reagents added, the overall products formed, and the required reaction conditions are to be mentioned.
The steps for writing the form of synthesis for the set of directions of reaction sequences are:
Identify the reactants, reagents, and products formed in each step from the names mentioned in the set of directions given for the reaction sequences.
The structures of reactants for the given names are to be drawn on the left side of the reaction arrow (
The reagents used are to be written above the arrow, and the reaction conditions including solvent, temperature, pH, time of reaction, etc. are to be written below the arrow. Reagents must be written in the form in which they can be added, not as they appear in the mechanism.
If more than one sequence is combined in one step, then the reagents are numbered according to their sequence and the reagents can be written above as well as below the arrow. For combined step, only the product of final step is to be drawn and the intermediate products are omitted.
The structures of the products are to be drawn on the right side of reaction arrow (
The inorganic by-products and leaving groups are often irrelevant to the synthesis and are omitted.

Want to see the full answer?
Check out a sample textbook solution
Chapter 13 Solutions
EBK GET READY FOR ORGANIC CHEMISTRY
- Provide steps and explanation please.arrow_forwardDraw a structural formula for the major product of the acid-base reaction shown. H 0 N + HCI (1 mole) CH3 N' (1 mole) CH3 You do not have to consider stereochemistry. ● • Do not include counter-ions, e.g., Na+, I, in your answer. . In those cases in which there are two reactants, draw only the product from 989 CH3 344 ? [Farrow_forwardQuestion 15 What is the major neutral organic product for the following sequence? 1. POCI₂ pyridine ? 2. OsO4 OH 3. NaHSO Major Organic Product ✓ OH OH 'OH OH 'OH 'CIarrow_forward
- Could you please solve the first problem in this way and present it similarly but color-coded or step by step so I can understand it better? Thank you!arrow_forwardCould you please solve the first problem in this way and present it similarly but color-coded or step by step so I can understand it better? Thank you!arrow_forwardCould you please solve the first problem in this way and present it similarly but (color-coded) and step by step so I can understand it better? Thank you! I want to see what they are doingarrow_forward
- Can you please help mne with this problem. Im a visual person, so can you redraw it, potentislly color code and then as well explain it. I know im given CO2 use that to explain to me, as well as maybe give me a second example just to clarify even more with drawings (visuals) and explanations.arrow_forwardPart 1. Aqueous 0.010M AgNO 3 is slowly added to a 50-ml solution containing both carbonate [co32-] = 0.105 M and sulfate [soy] = 0.164 M anions. Given the ksp of Ag2CO3 and Ag₂ soy below. Answer the ff: Ag₂ CO3 = 2 Ag+ caq) + co} (aq) ksp = 8.10 × 10-12 Ag₂SO4 = 2Ag+(aq) + soy² (aq) ksp = 1.20 × 10-5 a) which salt will precipitate first? (b) What % of the first anion precipitated will remain in the solution. by the time the second anion starts to precipitate? (c) What is the effect of low pH (more acidic) condition on the separate of the carbonate and sulfate anions via silver precipitation? What is the effect of high pH (more basic)? Provide appropriate explanation per answerarrow_forwardPart 4. Butanoic acid (ka= 1.52× 10-5) has a partition coefficient of 3.0 (favors benzene) when distributed bet. water and benzene. What is the formal concentration of butanoic acid in each phase when 0.10M aqueous butanoic acid is extracted w❘ 25 mL of benzene 100 mL of a) at pit 5.00 b) at pH 9.00arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning

