EBK FUNDAMENTALS OF GEOTECHNICAL ENGINE
EBK FUNDAMENTALS OF GEOTECHNICAL ENGINE
5th Edition
ISBN: 8220101425829
Author: SIVAKUGAN
Publisher: CENGAGE L
Question
Book Icon
Chapter 13, Problem 13.27CTP

(a)

To determine

Find the maximum shear stress developed within the soil.

(a)

Expert Solution
Check Mark

Answer to Problem 13.27CTP

The maximum shear stress developed within the soil is 33.3kN/m2_.

Explanation of Solution

Given information:

The depth (H) of slope is 5 m.

The angle (β) of bed slope is 23°.

The unit weight of the soil (γ) is 18.5kN/m3.

The cohesion (c) is 15kN/m2.

The angle (ϕ) of friction is 20°.

Calculation:

The maximum shear stress developed at soil rock interface (5 m depth).

Find the maximum shear stress 20° developed within the soil using the equation:

τd=γHsinβcosβ

Substitute 18.5kN/m3 for γ, 5 m for H, and 23° for β

τd=18.5×5×sin23°×cos23°=33.3kN/m2

Thus, the maximum shear stress developed within the soil is 33.3kN/m2_.

(b)

To determine

Find the maximum shear strength available within the soil.

(b)

Expert Solution
Check Mark

Answer to Problem 13.27CTP

The maximum shear strength available within the soil is 43.5kN/m2_.

Explanation of Solution

Given information:

The depth (H) of slope is 5 m.

The angle (β) of bed slope is 23°.

The unit weight of the soil (γ) is 18.5kN/m3.

The cohesion (c) is 15kN/m2.

The angle (ϕ) of friction is 20°.

Calculation:

Find the maximum shear strength (τf) available within the soil using the equation:

τf=c+γHcos2βtanϕ.

Substitute 15kN/m2 for c, 18.5kN/m3 for γ, 5 m for H, 23° for β, and 20° for ϕ.

τf=15+(18.5)(5)cos2(23°)tan(20°)=15+28.5=43.5kN/m2

Thus, the maximum shear strength available within the soil is 43.5kN/m2_.

(c)

To determine

Find the factor of safety of the slope.

(c)

Expert Solution
Check Mark

Answer to Problem 13.27CTP

The factor of safety of the slope is 1.31_.

Explanation of Solution

Given information:

The depth (H) of slope is 5 m.

The angle (β) of bed slope is 23°.

The unit weight of the soil (γ) is 18.5kN/m3.

The cohesion (c) is 15kN/m2.

The angle (ϕ) of friction is 20°.

Calculation:

Find the factor of safety (FSs) of the slope using the equation:

FSs=cγHcos2βtanβ+tanϕtanβ

Substitute 15kN/m2 for c, 18.5kN/m3 for γ, 5 m for H, 23° for β, and 20° for ϕ.

FSs=15(18.5)(5)cos2(23°)tan(23°)+tan(20°)tan(23°)=0.45+0.86=1.31

Therefore, the factor of safety of the slope is 1.31_.

(d)

To determine

Find the maximum possible depth for the soil before it becomes unstable.

(d)

Expert Solution
Check Mark

Answer to Problem 13.27CTP

The maximum possible depth for the soil before it becomes unstable is 15.8m_.

Explanation of Solution

Given information:

The depth (H) of slope is 5 m.

The angle (β) of bed slope is 23°.

The unit weight of the soil (γ) is 18.5kN/m3.

The cohesion (c) is 15kN/m2.

The angle (ϕ) of friction is 20°.

Calculation:

The slope becomes unstable then the factor of safety (FSs) against sliding is 1.0.

Find the maximum possible depth (Hcr) for the soil before it becomes unstable using the equation:

Hcr=cγ1cos2β(tanβtanϕ)

Substitute 15kN/m2 for c, 18.5kN/m3 for γ, 23° for β, and 20° for ϕ.

Hcr=(1518.5)1cos223°(tan23°tan20°)=0.811(19.51)=15.8m

Thus, the maximum possible depth for the soil before it becomes unstable is 15.8m_.

(e)

To determine

Find the factor of safety with respect to cohesion when the friction is fully mobilized.

(e)

Expert Solution
Check Mark

Answer to Problem 13.27CTP

The factor of safety with respect to cohesion when the friction is fully mobilized is 3.1_.

Explanation of Solution

Given information:

The depth (H) of slope is 5 m.

The angle (β) of bed slope is 23°.

The unit weight of the soil (γ) is 18.5kN/m3.

The cohesion (c) is 15kN/m2.

The angle (ϕ) of friction is 20°.

Calculation:

The developed angle of friction is equal to the angle of friction when the friction is fully mobilized. Therefore, ϕd=ϕ.

Find the developed cohesion in the soil using the equation:

τd=cd+γHcos2βtanϕdcd=τdγHcos2βtanϕd

Substitute ϕ for ϕd.

cd=τdγHcos2βtanϕ

Substitute 33.3kN/m2 for τd, 18.5kN/m3 for γ, 5 m for H, 23° for β, and 20° for ϕ.

cd=33.3(18.5)(5)cos2(23°)tan(20°)=33.328.5=4.8kN/m2

Find the factor of safety (FSc) with respect to cohesion when the friction is fully mobilized using the equation:

FSc=ccd

Substitute 15kN/m2 for c and 4.8kN/m2 for cd.

FSc=154.8=3.1

Thus, the factor of safety with respect to cohesion when the friction is fully mobilized is 3.1_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1-Define a cartesion system      2 identify the structure's supports and the type of structure (2D) or 3D       3-If the structure has more than one element dismember the structure and draw free body diagram(show all actions and reactions) on each element independently     4- Determine the type of suports     5- show the unkown supports reactions with any assumed direction but you cannot change the assumed force direction once you dicede       6-In a common joint, you can dicide on the force direction in one element, however, in the other one you need to follow the Newton'ns 3rd law and shoe the opposite direction    7- if you have multiple actions forces in the system, find force components for each foce independently   use Sin/Cos/Tan functions to find forces components in two perpendicular directions    8- Add forces in each direction since they are paralled forces  Rx=fx  Ry=fy  Rz= fy
- - A study reports data on the effects of the drug tamoxifen on change in the level of cortisol-binding globulin (CBG) of patients during treatment. With age = x and ACBG = y, summary values are n = 26, Ex, = 1613, Σ(x, x)² = 3756.96, Ey, = 281.9, (y, v)² = 465.34, and Exy, = 16,709. (a) Compute a 90% CI for the true correlation coefficient p. (Round your answers to four decimal places.) (b) Test Ho: p =-0.5 versus Ha: p< -0.5 at level 0.05. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to four decimal places.) P-value = State the conclusion in the problem context. Fail to reject Ho. There is evidence that p < -0.5. Reject Ho. There is no evidence that p < -0.5. Reject Ho. There is evidence that p < -0.5. Fail to reject Ho. There is no evidence that p < -0.5. (c) In a regression analysis of y on x, what proportion of variation in change of cortisol-binding globulin level could be explained by variation in…
The authors of a paper presented a correlation analysis to investigate the relationship between maximal lactate level x and muscular endurance y. The accompanying data was read from a plot in the paper. 1,410 1,465 1,470 1,515 2,190 x 390 740 760 810 860 1,035 1,190 1,240 1,290 у 3.90 4.10 4.80 5.10 3.90 3.60 6.20 6.78 7.65 4.85 7.90 4.35 6.70 9.00 S = 2,619,058.929, S = 39.0467, S xx yy 7,588.061. A scatter plot shows a linear pattern. ху (a) Test to see whether there is a positive correlation between maximal lactate level and muscular endurance in the population from which this data was selected. (Use α = 0.05.) State the appropriate null and alternative hypotheses. O Ho: P = 0 H₂: p 0 Compute the value of the sample correlation coefficient, r. (Round your answer to four decimal places.) Calculate the test statistic and determine the P-value. (Round your test statistic to one decimal place and your P-value to three decimal places.) t P-value = State the conclusion in the problem…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning