Concept explainers
Find the percentage of load carried by the shaft.
Answer to Problem 13.1P
The percentage of load carried by the shaft is
Explanation of Solution
Given information:
The diameter of the base
The total length (L) is 27.0 ft.
Unit weight of loose sand
Unit weight of dense sand
The diameter of the shaft
The length of the shaft
The value of factor of safety (FOS) is 4.
Consider
Calculation:
Find the area of the base
Substitute
From given Figure, find the effective stress of soil.
Find the ratio
Substitute 27 ft for
Refer Table 13.3. “Berezantzev et al.’s value of
The value of
Find the bearing capacity factor
Substitute
Find the net ultimate load carrying capacity at the base
Substitute
Find the shaft load
Find the perimeter of the shaft
Substitute 2.5 ft for
Find the value of
Substitute
Find the value of
Substitute
Find the critical depth
Substitute 2.5 ft for
The value of critical depth 37.5 ft is more than the length
Find the frictional resistance
At depth
At depth
Substitute 0.485 for K,
Find the load carrying capacity of the shaft
Find the ultimate load
Substitute
Find the allowable load
Substitute
Find the percentage of load carried by the shaft:
Substitute
Therefore, the percentage of load carried by the shaft is
Want to see more full solutions like this?
Chapter 13 Solutions
Principles Of Foundation Engineering 9e
- A free-headed drilled shaft is shown in Figure P13.10. Let Qg = 260 kN, Mg = 0, = 17.5 kN/m3, = 35, c' = 0, and Ep = 22 106 kN/m2. Determine a. The ground line deflection, xo b. The maximum bending moment in the drilled shaft c. The maximum tensile stress in the shaft d. The minimum penetration of the shaft needed for this analysisarrow_forwardTorque T.arrow_forwardFor the drilled shaft described in Problem 19.7, estimate the total elastic settlement at working load. Use Eqs. (18.45), (18.47), and (18.48). Assume that Ep = 20 106 kN/m2, s = 0.3, Es = 12 103 kN/m2, = 0.65 and Cp = 0.03. Assume 80% mobilization of skin resistance at working load. (See Part c of Problem 19.7) 19.7 Figure 19.16 shows a drilled shaft without a bell. Here, L1 = 6 m, L2 = 7 m, Ds = 1.5 m, cu(1) = 50 kN/m2, and cu(2) = 75 kN/m2. Find these values: a. The net ultimate point bearing capacity. Use Eqs. (19.23) and (19.24) b. The ultimate skin resistance. Use Eqs. (19.26) and (19.28) c. The working load, Qw (FS = 3) FIG. 19.16arrow_forward
- A 3 ft diameter straight drilled shaft is shown in Figure P13.7. Determine the load-carrying capacity of the drilled shaft with FS = 3. Take / as 0.8 for the sand.arrow_forward1. Triaxial compression tests are done on quartzite rocks, the results are shown below. (0₁+03)/2 -964.25 14500 19575 23200 29000 43210 63075 psi (01-03)/2 964.25 14500 18850 21750 26100 35960 48575 psi Comment on the applicability of each of the Mohr-Coulomb, Griffith, and Hoek-Brown criteria for the testing results.arrow_forwardA 20 mm diameter hole is drilled on the centerline of a steel strap 50 mm wide by 5 mm thick, subjected to an axial pull P = 10 kN. Determine the approximate maximum unit stress adjacent to the hole. Hint: This is a stress concentration question. The first step is to calculate the K value. Select one: O a. 0.1 kN/mm? b. 0.0733 kN/mm? c. 0.146 kN/mm2arrow_forward
- Circular shaftarrow_forwardHint: The problem is 10.10 taken from the book " introductory to mining engineering " written by "Howard L.Hartman" A single rectangular opening 10 ft in height is driven in rock having strengths of fc=18000 lb/in2 and ft= 1500 lb/in2. Rock specific gravity is 2.3. The opening is located at a depth of 2000 ft in a stress field of no lateral pressure and has a fillet ratio of 1/6. (a). Determine if the opening will fail when its width is 20 ft ? (b). What is the maximum safe width of the opening?.A single rectangular opening 10 ft (3.0 m) in height is driven in rock having strengths of fc = 18,000 lb/in2 (124 MPa) and ft=1500 lb/in2. (10.3 MPa).Rock specific gravity is 2.3.The opening is located at depth of 2000 ft (610 m) in a stress field of no lateral pressure and has a fillet ratio of 1/6 .a. Determine if the opening will fail when its width is 20 ft (6.1 m).b. Is there any benefit to reducing the width to 10 ft (3.0 m)? To 5 ft (1.5 m)?c. What is the maximum safe width of opening?arrow_forwardTake o, = 580 kPa (Figure 1) Express your answer to three significant figures and include the appropriate units. HÀ ? o, = Value Units Submit Request Answer Figure Part B Determine the shear stress acting on the inclined plane AB. Express your answer to three significant figures and include the appropriate units. В HA ? 30° Value Units Aarrow_forward
- answer please asaparrow_forwardRock mechanics class appreciate your help and explanationarrow_forward3. The A-36 steel drill shaft of an oil well extends 12000 ft into the ground. Assuming that the pipe used to drill the well is suspended freely from the derrick at A, determine the maximum average normal stress in each pipe string and the elongation of its end D with respect to the fixed end at A. The shaft consists of three different sizes of pipe, AB, BC, and CD, each having the length, weight per unit length, and cross-sectional area indicated. AAB= 2.50 in.² WAB= 3.2 lb/ft ABC= 1.75 in? WBC= 2.8 lb/ft ACD= 1.25 in.² WCD= 2.0 lb/ft B C D 5000 ft 5000 ft 2000 ftarrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning