
(a)
Interpretation:
The number of moles of hydrogen gas evolved needs to be determined when 1.385 g of an unknown metal is reacted with an excess of HCl to evolve the gas with a volume of 382.6 mL at 20.0°C and 755 mmHg pressure.
Concept introduction:
Solution stoichiometry involves the calculation of the concentration of solutions in the given conditions of volumes, moles, etc. There are various ways to calculate the concentration of solutions such as molarity, molality, mole fraction, ppm, ppb etc. Mole fraction is the ratio of moles of substance and total moles in the solution or mixture. One ppm stands for part per million or milligrams per liter (mg/L) whereas parts per billion (ppb) is one part in 1 billion.
Molarity represents the moles of solute dissolved in per liter of solution. The mathematical expression of molarity is:
(b)
Interpretation:
The mass of
Concept introduction:
From the number of moles and molar mass, the mass of substance can be calculated as follows:
Here, n is number of moles and M is molar mass.
(c)
Interpretation:
The molality of particles of
Concept introduction:
Molality represents the moles of solute dissolve in per kg of solvent. The mathematical expression of molality is:
From freezing point depression, the molality can be determined using the following relation:
(d)
Interpretation:
The number of moles of ions present in solution of
Concept introduction:
Solution stoichiometry involves the calculation of the concentration of solutions in the given conditions of volumes, moles, etc. There are various ways to calculate the concentration of solutions such as molarity, molality, mole fraction, ppm, ppb etc. Mole fraction is the ratio of moles of substance and total moles in the solution or mixture. One ppm stands for part per million or milligrams per liter (mg/L) whereas parts per billion (ppb) is one part in 1 billion.
Molarity represents the moles of solute dissolved in per liter of solution. The mathematical expression of molarity is:
(e)
Interpretation:
The formula and molecular weight of
Concept introduction:
Solution stoichiometry involves the calculation of the concentration of solutions in the given conditions of volumes, moles, etc. There are various ways to calculate the concentration of solutions such as molarity, molality, mole fraction, ppm, ppb etc. Mole fraction is the ratio of moles of substance and total moles in the solution or mixture. One ppm stands for part per million or milligrams per liter (mg/L) whereas parts per billion (ppb) is one part in 1 billion.
Molarity represents the moles of solute dissolved in per liter of solution. The mathematical expression of molarity is:
(f)
Interpretation:
The metal M in
Concept introduction:
Solution stoichiometry involves the calculation of the concentration of solutions in the given conditions of volumes, moles, etc. There are various ways to calculate the concentration of solutions such as molarity, molality, mole fraction, ppm, ppb etc. Mole fraction is the ratio of moles of substance and total moles in the solution or mixture. One ppm stands for part per million or milligrams per liter (mg/L) whereas parts per billion (ppb) is one part in 1 billion.
Molarity represents the moles of solute dissolved in per liter of solution. The mathematical expression of molarity is:

Trending nowThis is a popular solution!

Chapter 13 Solutions
EBK CHEMISTRY
- In a benzene derivative that has -CH2CH3, indicate how it can be substituted by -COOH.arrow_forwardIn a sulfonated derivative of benzene, indicate how -SO3H can be eliminated.arrow_forwardWhat is the equilibrium expression (law of mass action) for the following reaction:CO2 (g) + H2O (l) ⇋ H+ (aq) + HCO3- (aq)arrow_forward
- Indicate the compound resulting from adding NaOH cyclopentane-CH2-CHO.arrow_forwardUse the provided information to calculate Kc for the following reaction at 550 °C: H2(g) + CO2(g) ⇌ CO(g) + H2O(g) Kc = ?CoO(s) + CO(g) ⇌ Co(s) + CO2(g) Kc1 = 490CoO(s) + H2(g) ⇌ Co(s) + H2O(g) Kc2 = 67arrow_forwardCalculate Kc for the reaction: I2 (g) ⇋ 2 I (g) Kp = 6.26 x 10-22 at 298Karrow_forward
- For each scenario below, select the color of the solution using the indicator thymol blue during the titration. When you first add indicator to your Na2CO3solution, the solution is basic (pH ~10), and the color is ["", "", "", "", ""] . At the equivalence point for the titration, the moles of added HCl are equal to the moles of Na2CO3. One drop (or less!) past this is called the endpoint. The added HCl begins to titrate the thymol blue indicator itself. At the endpoint, the indicator color is ["", "", "", "", ""] . When you weren't paying attention and added too much HCl (~12 mL extra), the color is ["", "", "", "", ""] . When you really weren't paying attention and reached the second equivalence point of Na2CO3, the color isarrow_forwardTo convert cyclopentane-CH2-CHO to cyclopentane-CH2-CH3, compound A is added, followed by (CH3)3CO-K+, DMS at 100oC. Indicate which compound A is.arrow_forwardIndicate how to obtain the compound 2-Hydroxy-2-phenylacetonitrile from phenylmethanol.arrow_forward
- Indicate the reagent needed to go from cyclopentane-CH2-CHO to cyclopentane-CH2-CH=CH-C6H5.arrow_forwardesc Write the systematic name of each organic molecule: structure CH3 CH3-C=CH2 CH3-CH2-C-CH2-CH3 CH-CH3 CH3 ☐ ☐ ☐ CI-CH-CH=CH2 Explanation Check F1 F2 name 80 F3 F4 F5 F6 A 7 ! 2 # 3 4 % 5 6 & 7 Q W E R Y FT 2025 Mcarrow_forwardTwo reactants X and Z are required to convert the compound CH3-CH2-CH2Br to the compound CH3-CH2-CH=P(C6H5)3. State reactants X and Z.arrow_forward
- Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks Cole
