
(a)
Interpretation:
The rate constant, half life and the concentration of
Concept Introduction:
The
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
Integrated rate law for second order reactions:
Taking in the example of following reaction,
And the reaction follows second order rate law,
Then the relationship between the concentration of
The above expression is called as integrated rate for second order reactions.
Half life for second order reactions:
In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).
The half-life of second order reaction can be calculated using the equation,
Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
To calculate the rate constant of the reaction
(a)

Answer to Problem 13.146QP
Answer
The rate constant of the reaction is
Explanation of Solution
The plot of
(b)
Interpretation:
The rate constant, half life and the concentration of
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
Integrated rate law for second order reactions:
Taking in the example of following reaction,
And the reaction follows second order rate law,
Then the relationship between the concentration of
The above expression is called as integrated rate for second order reactions.
Half life for second order reactions:
In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).
The half-life of second order reaction can be calculated using the equation,
Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
To calculate the half life of the reaction
(b)

Answer to Problem 13.146QP
Answer
The half period of the reaction is
Explanation of Solution
Initial concentration =
Rate constant=
The half-life of second order reaction can be calculated using the equation,
The half period of the reaction =
(c)
Interpretation:
The rate constant, half life and the concentration of
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
Integrated rate law for second order reactions:
Taking in the example of following reaction,
And the reaction follows second order rate law,
Then the relationship between the concentration of
The above expression is called as integrated rate for second order reactions.
Half life for second order reactions:
In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).
The half-life of second order reaction can be calculated using the equation,
Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
To calculate the concentration of
(c)

Answer to Problem 13.146QP
Answer
The concentration of
Explanation of Solution
The equation for second order reaction is given as,
Initial concentration =
Rate constant=
The concentration of
The concentration of
Want to see more full solutions like this?
Chapter 13 Solutions
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card
- Q5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forwardCalculate the proton and carbon chemical shifts for this structurearrow_forwardA. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forward
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





