A gas mixture containing CH3 fragments, C2H6 molecules, and an inert gas (He) was prepared at 600 K with a total pressure of 5.42 atm. The elementary reaction
has a second-order rate constant of 3.0 × 104/M · s. Given that the mole fractions of CH3 and C2H6 are 0.00093 and 0.00077, respectively, calculate the initial
Interpretation:
The initial rate of the given reaction at the given temperature has to be calculated.
Concept introduction:
Rate of the reaction is the change in the concentration of reactant or a product with time. It can be varied in accordance with temperature, pressure, concentration, presence of catalyst, surface area
Rate equation for the general reaction
Rate constants are independent of concentration but depend on other factors, most notably temperature.
The reaction with the faster rate will have the larger rate constant.
Order of a reaction: The sum of exponents of the concentrations in the rate law for the reaction is said to be order of a reaction.
The partial pressure of a gas in a mixture can be expressed as,
The ideal gas Law equation is,
Answer to Problem 13.132QP
Initial rate of the given reaction is
Explanation of Solution
Given,
Gas mixture containing
The elementary reaction is,
This reaction follows second order kinetics, with a rate constant of
Given mole fractions of
The initial rate of the reaction at
Rate law for the given reaction is,
Rate constant value for the given reaction is
Using mole fraction value and total partial pressure, partial pressure of each reactant in the reaction can be calculated as follows,
Molar concentration of reactants can be determined with the help of ideal gas equation,
Substitute the concentration and the rate constant into the rate law to find the initial rate of the reaction,
Want to see more full solutions like this?
Chapter 13 Solutions
EBK CHEMISTRY
- 5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3arrow_forwardShow work. don't give Ai generated solution. How many carbons and hydrogens are in the structure?arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning