ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
13th Edition
ISBN: 9781264070077
Author: Chang
Publisher: INTER MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.125QP

Polyethylene is used in many items, including water pipes, bottles, electrical insulation, toys, and mailer envelopes. It is a polymer, a molecule with a very high molar mass made by joining many ethylene molecules together. (Ethylene is the basic unit, or monomer for polyethylene.) The initiation step is

R 2 k 1 2 R initiation

The R · species (called a radical) reacts with an ethylene molecule (M) to generate another radical

R + M M 1

Reaction of M1 · with another monomer leads to the growth or propagation of the polymer chain

M 1 + M k p M 2 propagation

This step can be repeated with hundreds of monomer units. The propagation terminates when two radicals combine

M + M k t M M termination

The initiator frequently used in the polymerization of ethylene is benzoyl peroxide [(C6H5COO)2]:

[ ( C 6 H 5 COO ) 2 ] 2 C 6 H 5 COO

This is a first-order reaction. The half-life of benzoyl peroxide at 100°C is 19.8 min. (a) Calculate the rate constant (in min−1) of the reaction. (b) If the half-life of benzoyl peroxide is 7.30 h, or 438 min, at 70°C, what is the activation energy (in kJ/mol) for the decomposition of benzoyl peroxide? (c) Write the rate laws for the elementary steps in the above polymerization process, and identify the reactant, product, and intermediates. (d) What condition would favor the growth of long, high-molar-mass polyethylenes?

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The rate constant of the given reaction has to be calculated.

Concept introduction:

Half-life: The time required for half of a reactant to be consumed in a reaction is said to be half-life.

  • Half-life of a reaction is represented by the symbol as t12
  • Half-life is discovered by Ernest Rutherford's in 1907 from the original term half-life period.
  • The half-life period is then shortened as half-life in early 1950s.

Arrhenius equation:

  • Arrhenius equation is a formula that represents the temperature dependence of reaction rates
  • The Arrhenius equation has to be represented as follows

k=AeEa/RT

  • Ea represents the activation energy and it’s unit is kJ/mol
  • R represents the universal gas constant and it has the value of 8.314 J/K.mol
  • T represents the absolute temperature
  • A represents the frequency factor or collision frequency
  • e represents the base of natural logarithm
  •  Arrhenius equation equation was proposed by Svante Arrhenius in 1889.
  • The activation energy for the given decomposition can be calculated from the modified Arrhenius equation.

lnk1k2=EaR[1T21T1]

Reaction: Substances which are mutually involved each other in a chemical process and changed into different substances.

Answer to Problem 13.125QP

The rate constant of the given reaction is k=0.0350min1

Explanation of Solution

We can easily determine the rate constant of a reaction if half-life value is given by using half-life formula.

k=0.693t12

k=0.69319.8min

k=0.0350min1

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The activation energy for the decomposition of benzoyl peroxide has to be calculated.

Concept introduction:

Half-life: The time required for half of a reactant to be consumed in a reaction is said to be half-life.

  • Half-life of a reaction is represented by the symbol as t12
  • Half-life is discovered by Ernest Rutherford's in 1907 from the original term half-life period.
  • The half-life period is then shortened as half-life in early 1950s.

Arrhenius equation:

  • Arrhenius equation is a formula that represents the temperature dependence of reaction rates
  • The Arrhenius equation has to be represented as follows

k=AeEa/RT

  • Ea represents the activation energy and it’s unit is kJ/mol
  • R represents the universal gas constant and it has the value of 8.314 J/K.mol
  • T represents the absolute temperature
  • A represents the frequency factor or collision frequency
  • e represents the base of natural logarithm
  •  Arrhenius equation equation was proposed by Svante Arrhenius in 1889.
  • The activation energy for the given decomposition can be calculated from the modified Arrhenius equation.

lnk1k2=EaR[1T21T1]

Reaction: Substances which are mutually involved each other in a chemical process and changed into different substances.

Answer to Problem 13.125QP

The activation energy for the decomposition of benzoyl peroxide is Ea=1.1×105J/mol = 110kJ/mol

Explanation of Solution

The activation energy can be calculated by using modified Arrhenius equation and it can represented as follows

lnk1k2=EaR[1T21T1]

Where, k1 value is determined in step (a) k1=0.0350min1

Now, the given rate constant at 70°C is k2=1.58×103min1

Substitute the given values in the above said equation to get activation energy for the

ln0.0350min-11.58×10-3min-1=Ea(8.314J/K.mol)[1343K-1373K]

Ea=1.1×105J/mol = 110kJ/mol

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The reactant, product, and intermediate form the given elementary steps have to be written.

Concept introduction:

Half-life: The time required for half of a reactant to be consumed in a reaction is said to be half-life.

  • Half-life of a reaction is represented by the symbol as t12
  • Half-life is discovered by Ernest Rutherford's in 1907 from the original term half-life period.
  • The half-life period is then shortened as half-life in early 1950s.

Arrhenius equation:

  • Arrhenius equation is a formula that represents the temperature dependence of reaction rates
  • The Arrhenius equation has to be represented as follows

k=AeEa/RT

  • Ea represents the activation energy and it’s unit is kJ/mol
  • R represents the universal gas constant and it has the value of 8.314 J/K.mol
  • T represents the absolute temperature
  • A represents the frequency factor or collision frequency
  • e represents the base of natural logarithm
  •  Arrhenius equation equation was proposed by Svante Arrhenius in 1889.
  • The activation energy for the given decomposition can be calculated from the modified Arrhenius equation.

lnk1k2=EaR[1T21T1]

Reaction: Substances which are mutually involved each other in a chemical process and changed into different substances.

Answer to Problem 13.125QP

The reactant, product, and intermediate form the given elementary steps are written.

Explanation of Solution

The given steps are all elementary steps, the rate law for the given steps can be deduced simply as follows.

Initiation:           rate = ki[R2]Propagation:      rate = kp[M][M1]Termination:       rate = kt[M'][M'']

  • Reactants are: ethylene monomers
  • Product is: polyethylene
  • Intermediate are: M’, M”, and so on

 (R-species also qualifies as an intermediate)

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

What condition would favour the growth of long, high-molar-mass polyethylenes has to be explained.

Concept introduction:

Half-life: The time required for half of a reactant to be consumed in a reaction is said to be half-life.

  • Half-life of a reaction is represented by the symbol as t12
  • Half-life is discovered by Ernest Rutherford's in 1907 from the original term half-life period.
  • The half-life period is then shortened as half-life in early 1950s.

Arrhenius equation:

  • Arrhenius equation is a formula that represents the temperature dependence of reaction rates
  • The Arrhenius equation has to be represented as follows

k=AeEa/RT

  • Ea represents the activation energy and it’s unit is kJ/mol
  • R represents the universal gas constant and it has the value of 8.314 J/K.mol
  • T represents the absolute temperature
  • A represents the frequency factor or collision frequency
  • e represents the base of natural logarithm
  •  Arrhenius equation equation was proposed by Svante Arrhenius in 1889.
  • The activation energy for the given decomposition can be calculated from the modified Arrhenius equation.

lnk1k2=EaR[1T21T1]

Reaction: Substances which are mutually involved each other in a chemical process and changed into different substances.

Answer to Problem 13.125QP

What condition would favour the growth of long, high-molar-mass polyethylenes is explained.

Explanation of Solution

  • A high rate of propagations and a low rate of termination will favour the growth of long polymers.
  • The rate law of propagation depends on the concentration of ethylene monomer, when we increase the concentration of ethylene the rate of the propagation also increases.
  • The rate law of termination shows that the low concentration of the radical fragment M’ or M” and is lead to slower the rate of termination.  Which is accomplished by taking a low concentration of the initiator, R2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
10. Complete the following halogenation reactions for alkanes. Draw the structures of one of the many possible products for each reaction. Name the reactant and product. a) CH₂- CH-CH2-CH3 + Br₂ CH₂ UV UV b) + Cl2 c) CH3-CH₂ CHICHCHICH-CH CH₂-CH₂ + F2 UV
Which of the following processes involves the largest photon energy? Group of answer choices Electron promotion from n=2 to n=5 Electron relaxing from n=4 to n=3 Ionization of an electron from n=2 Ionization of an electron from n=4
Which of the following compounds does not match atomic ratio expectations in Mendeleev's 1872 periodic table? Group of answer choices NO2 Al2O3 SO3 CaO

Chapter 13 Solutions

ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<

Ch. 13.3 - Calculate the half-life of the decomposition of...Ch. 13.3 - The reaction 2A B is second order with a rate...Ch. 13.3 - Consider the first-order reaction A B in which A...Ch. 13.3 - Consider the reaction A products. The half-life...Ch. 13.3 - Consider the first-order reaction A products. The...Ch. 13.3 - What is the initial concentration of a reactant in...Ch. 13.4 - The second-order rate constant for the...Ch. 13.4 - The first-order rate constant for the reaction of...Ch. 13.4 - What is the activation energy of a particular...Ch. 13.4 - Prob. 2RCFCh. 13.5 - The reaction between NO2 and CO to produce NO and...Ch. 13.5 - The rate law for the reaction H2 + 2IBr I2 + 2HBr...Ch. 13.5 - For the reaction between NO and O2, the following...Ch. 13.6 - Which of the following is false regarding...Ch. 13 - What is meant by the rate of a chemical reaction?...Ch. 13 - Distinguish between average rate and instantaneous...Ch. 13 - Prob. 13.3QPCh. 13 - Can you suggest two reactions that are very slow...Ch. 13 - Write the reaction rate expressions for the...Ch. 13 - Write the reaction rate expressions for the...Ch. 13 - Consider the reaction 2NO(g)+O2(g)2NO2(g) Suppose...Ch. 13 - Consider the reaction N2(g)+3H2(g)2NH3(g) Suppose...Ch. 13 - Explain what is meant by the rate law of a...Ch. 13 - What are the units for the rate constants of...Ch. 13 - Consider the zero-order reaction: A product. (a)...Ch. 13 - On which of the following properties does the rate...Ch. 13 - The rate law for the reaction...Ch. 13 - Use the data in Table 13.2 to calculate the rate...Ch. 13 - Consider the reaction A+Bproducts From the...Ch. 13 - Consider the reaction X+YZ From the following...Ch. 13 - Determine the overall orders of the reactions to...Ch. 13 - Consider the reaction AB The rate of the reaction...Ch. 13 - Cyclobutane decomposes to ethylene according to...Ch. 13 - The following gas-phase reaction was studied at...Ch. 13 - Prob. 13.21QPCh. 13 - Prob. 13.22QPCh. 13 - Prob. 13.23QPCh. 13 - Prob. 13.24QPCh. 13 - What is the half-life of a compound if 75 percent...Ch. 13 - The thermal decomposition of phosphine (PH3) into...Ch. 13 - The rate constant for the second-order reaction...Ch. 13 - The rate constant for the second-order reaction...Ch. 13 - Consider the first-order reaction A B shown here....Ch. 13 - The reaction X Y shown here follows first-order...Ch. 13 - Define activation energy. What role does...Ch. 13 - Prob. 13.32QPCh. 13 - Prob. 13.33QPCh. 13 - Prob. 13.34QPCh. 13 - Sketch a potential energy versus reaction progress...Ch. 13 - Prob. 13.36QPCh. 13 - The diagram in (a) shows the plots of ln k versus...Ch. 13 - Given the same reactant concentrations, the...Ch. 13 - Some reactions are described as parallel in that...Ch. 13 - Variation of the rate constant with temperature...Ch. 13 - For the reaction NO(g)+O3(g)NO2(g)+O2(g) the...Ch. 13 - The rate constant of a first-order reaction is...Ch. 13 - The rate constants of some reactions double with...Ch. 13 - Prob. 13.44QPCh. 13 - Consider the second-order reaction...Ch. 13 - The rate at which tree crickets chirp is 2.0 102...Ch. 13 - Prob. 13.47QPCh. 13 - What do we mean by the mechanism of a reaction?...Ch. 13 - Classify each of the following elementary steps as...Ch. 13 - Reactions can be classified as unimolecular,...Ch. 13 - Determine the molecularity and write the rate law...Ch. 13 - What is the rate-determining step of a reaction?...Ch. 13 - The equation for the combustion of ethane (C2H6)...Ch. 13 - Specify which of the following species cannot be...Ch. 13 - The rate law for the reaction...Ch. 13 - For the reaction X2 + Y + Z XY + XZ it is found...Ch. 13 - Prob. 13.57QPCh. 13 - The rate law for the reaction...Ch. 13 - How does a catalyst increase the rate of a...Ch. 13 - What are the characteristics of a catalyst?Ch. 13 - A certain reaction is known to proceed slowly at...Ch. 13 - Distinguish between homogeneous catalysis and...Ch. 13 - Prob. 13.63QPCh. 13 - The concentrations of enzymes in cells are usually...Ch. 13 - The diagram shown here represents a two-step...Ch. 13 - Consider the following mechanism for the...Ch. 13 - The following diagrams represent the progress of...Ch. 13 - Prob. 13.68QPCh. 13 - Prob. 13.69QPCh. 13 - List four factors that influence the rate of a...Ch. 13 - Prob. 13.71QPCh. 13 - Prob. 13.72QPCh. 13 - Prob. 13.73QPCh. 13 - The following data were collected for the reaction...Ch. 13 - Prob. 13.75QPCh. 13 - The rate of the reaction...Ch. 13 - Which of the following equations best describes...Ch. 13 - Prob. 13.78QPCh. 13 - The bromination of acetone is acid-catalyzed:...Ch. 13 - The decomposition of N2O to N2 and O2 is a...Ch. 13 - The reaction S2O82+2I2SO42+I2 proceeds slowly in...Ch. 13 - Prob. 13.82QPCh. 13 - The integrated rate law for the zero-order...Ch. 13 - Prob. 13.84QPCh. 13 - Prob. 13.85QPCh. 13 - The diagrams here represent the reaction A + B C...Ch. 13 - Prob. 13.87QPCh. 13 - The rate law for the reaction 2NO2 (g) N2O4(g) is...Ch. 13 - Prob. 13.89QPCh. 13 - Prob. 13.90QPCh. 13 - Briefly comment on the effect of a catalyst on...Ch. 13 - When 6 g of granulated Zn is added to a solution...Ch. 13 - Prob. 13.93QPCh. 13 - A certain first-order reaction is 35.5 percent...Ch. 13 - The decomposition of dinitrogen pentoxide has been...Ch. 13 - The thermal decomposition of N2O5 obeys...Ch. 13 - Prob. 13.97QPCh. 13 - Prob. 13.99QPCh. 13 - Prob. 13.100QPCh. 13 - Prob. 13.101QPCh. 13 - Chlorine oxide (ClO), which plays an important...Ch. 13 - Prob. 13.103QPCh. 13 - Prob. 13.104QPCh. 13 - Prob. 13.105QPCh. 13 - Prob. 13.106QPCh. 13 - Prob. 13.107QPCh. 13 - Prob. 13.108QPCh. 13 - Prob. 13.109QPCh. 13 - Thallium(I) is oxidized by cerium(IV) as follows:...Ch. 13 - Prob. 13.111QPCh. 13 - Prob. 13.112QPCh. 13 - Prob. 13.113QPCh. 13 - Prob. 13.114QPCh. 13 - Strontium-90, a radioactive isotope, is a major...Ch. 13 - Prob. 13.117QPCh. 13 - Consider the following potential energy profile...Ch. 13 - Prob. 13.119QPCh. 13 - Prob. 13.120QPCh. 13 - Prob. 13.121QPCh. 13 - Prob. 13.122QPCh. 13 - Prob. 13.123QPCh. 13 - Prob. 13.124QPCh. 13 - Polyethylene is used in many items, including...Ch. 13 - Prob. 13.126QPCh. 13 - Prob. 13.127QPCh. 13 - Prob. 13.128QPCh. 13 - Prob. 13.129QPCh. 13 - Prob. 13.130QPCh. 13 - Prob. 13.131QPCh. 13 - A gas mixture containing CH3 fragments, C2H6...Ch. 13 - Prob. 13.133QPCh. 13 - The activation energy (Ea) for the reaction...Ch. 13 - The rate constants for the first-order...Ch. 13 - Prob. 13.136QPCh. 13 - An instructor performed a lecture demonstration of...Ch. 13 - Prob. 13.138QPCh. 13 - Is the rate constant (k) of a reaction more...Ch. 13 - Prob. 13.140QPCh. 13 - Prob. 13.141QPCh. 13 - Prob. 13.142QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY