BIG JAVA: LATE OBJECTS
BIG JAVA: LATE OBJECTS
2nd Edition
ISBN: 9781119626220
Author: Horstmann
Publisher: WILEY
Question
Book Icon
Chapter 13, Problem 12PP
Program Plan Intro

Evaluation of Expression

Program plan:

Filename: “Constant.java”

This program file is used to define a class “Constant”. In the code,

  • Define a class “Constant”.
    • Declare an integer “number”.
    • Define the constructor “Constant()”.
      • Set the value of “number”.
    • Define the method “value()”.
      • Return the value of “number”.
    • Define the method “toString()”.
      • Return the value of “number” as a string.
    • Define the method “derivative()”.
      • Return the value.

Filename: “Variable.java”

This program file is used to define a class “Variable”. In the code,

  • Define a class “Variable”.
    • Define a variable “letter”.
    • Define the constructor “Variable ()”.
      • If the “letter” is not equal to “x”,
        • Throw an exception.
      • Set the letter.
    • Define the method “value()”.
      • Return the value of “x”.
    • Define the method “toString()”.
      • Return the value of “letter”.
    • Define the method “derivative()”.
      • Return the value.

Filename: “Expression.java”

This program file is used to define an interface “Expression”. In the code,

  • Define an interface “Expression”.
    • Declare the method “value()” with argument “x”.
    • Declare a method “toString()”.
    • Declare a method “derivative()”.

Filename: “Difference.java”

This program file is used to define a class “Difference”. In the code,

  • Define a class “Difference”.
    • Define the class members “leftOp” and “rightOp”.
    • Define the constructor “Difference ()”.
      • Set the value of class members.
    • Define the method “value()” to calculate the difference of two expression.
      • Return the difference.
    • Define the method “toString()”.
      • Return the expression in string format.
    • Define the method “derivative()”.
      • Return the derivative.

Filename: “Product.java”

This program file is used to define a class “Product”. In the code,

  • Define a class “Product”.
    • Define the class members “leftOp” and “rightOp”.
    • Define the constructor “Product()”.
      • Set the value of class members.
    • Define the method “value()” to calculate the product of two expression.
      • Return the product.
    • Define the method “toString()”.
      • Return the expression in string format.
    • Define the method “derivative()”.
      • Return the derivative.

Filename: “Quotient.java”

This program file is used to define a class “Quotient”. In the code,

  • Define a class “Quotient”.
    • Define the class members “leftOp” and “rightOp”.
    • Define the constructor “Quotient()”.
      • Set the value of class members.
    • Define the method “value()” to calculate the quotient of two expression.
      • Return the quotient.
    • Define the method “toString()”.
      • Return the expression in string format.
    • Define the method “derivative()”.
      • Return the derivative.

Filename: “Sum.java”

This program file is used to define a class “Sum”. In the code,

  • Define a class “Sum”.
    • Define the class members “leftOp” and “rightOp”.
    • Define the constructor “Sum()”.
      • Set the value of class members.
    • Define the method “value()” to calculate the sum of two expression.
      • Return the sum.
    • Define the method “toString()”.
      • Return the expression in string format.
    • Define the method “derivative()”.
      • Return the derivative.

Filename: “ExpressionTokenizer.java”

This program file is used to define a class “ExpressionTokenizer”. In the code,

  • Define a class “ExpressionTokenizer”.
    • Define the class members “input”, “start” and “end”.
    • Define the constructor “ExpressionTokenizer()”.
      • Set the values of “input”, “start”, “end” and find the first token using “nextToken()”.
    • Define the method “peekToken()”.
      • If the “start” is greater than “input.length()”.
        • Return “null”.
          • Else,
            • Return the substring.
    • Define the method “nextToken()”.
      • Call the method “peekToken()” to get the token.
      • Assign the value of “end” to “start”.
      • If the value of “start” is greater than or equal to length of the input,
        • Return the value of “r”.
          • If the character at “start” is a digit,
            • Set “end” equal to “start+1”,
            • Iterate a “while” loop,
              • Increment the “end” by 1.
                • Set the value of “end”.
          • Return the value of “r”.

Filename: “Evaluator.java”

This program file is used to define a class “Evaluator”. In the code,

  • Define a class “Evaluator”.
    • Define the class members “tokenizer” which is an object of class “ExpressionTokenizer”.
    • Define the constructor “Evaluator()”.
      • Define “tokenizer”.
    • Define the method “getExpressionValue()”.
      • Get terms using “getTermValue()” to “value”.
      • Define a Boolean value “done” and assign “false” to it.
      • While “true”,
        • Call “peekToken()” to get the token and assign to “next”.
        • If the value of “next” is “+” or “-”.
          • Get the next token using “nextToken()”.
          • Get next term to “value2”.
          • If the “next” is “+”,
            • Calculate the sum of “value” and “value2” and assign to “value”.
          • Else,
            • Calculate the difference of “value” and “value2” and assign to “value”.
        • Else,
          • Set “done” equal to “true”.
              • Return “value”.
    • Define the method “getTermValue()”.
      • Get factors using “getFactorValue()” to “value”.
      • Define a Boolean value “done” and assign “false” to it.
      • While “true”,
        • Call “peekToken()” to get the token and assign to “next”.
        • If the value of “next” is “*” or “/”.
          • Get the next token using “nextToken()”.
          • Get next factor to “value2”.
          • If the “next” is “*”,
            • Calculate the Product of “value” and “value2” and assign to “value”.
          • Else,
            • Calculate the Quotient of “value” and “value2” and assign to “value”.
        • Else,
          • Set “done” equal to “true”.
              • Return “value”.
    • Define the method “getFactorValue()”.
      • Declare “value”.
      • Call “peekToken()” to get the token and assign to “next”.
      • If the value of “next” is “(”.
        • Get the next token using “nextToken()”.
        • Discard “(” using “nextToken()”.
        • Get next expression to “value”.
        • Discard “)” using “nextToken()”.
              • Else,
                • If the “next” is “x”,
                  • Get the variable “x” to “value”.
                • Else,
                  • Get the next token to “value”.
              • Return “value”.

Filename: “ExpressionCalculator.java”

This program file is used to define a class “ExpressionCalculator”. In the code,

  • Define a class “ExpressionCalculator”.
    • Define the method “main()”.
      • Define the object “in” of “Scanner”.
      • Prompt the user to enter the expression.
      • Read the lines using “nextLine()”.
      • Evaluate the expression “input”.
      • Call the method “getExprssionValue()” and save to “expr”.
      • Print “expr”.
      • Prompt the user to enter the value for “x”.
      • Scan for the value of “x”.
      • Call the method “value()” on “x” and save the result to “value”.
      • Print “value”.
      • Call the method “derivative()” and save the result to “df”.
      • Print “df”.

Blurred answer
Students have asked these similar questions
I need help creating the network diagram and then revising it for the modified activity times.
Activity No. Activity Time (weeks) Immediate Predecessors 1 Requirements collection 3 2 Requirements structuring 4 1 3 Process analysis 3 2 4 Data analysis 3 2 5 Logical design 50 3,4 6 Physical design 5 5 7 Implementation 6 6 c. Using the information from part b, prepare a network diagram. Identify the critical path.
Given the following Extended-BNF grammar of the basic mathematical expressions:  Show the derivation steps for the expression: ( 2 + 3 ) * 6 – 20 / ( 3 + 1 ) Draw the parsing tree of this expression. SEE IMAGE
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education