For Exercises 105–110, factor the expressions over the set of complex numbers. For assistance, consider these examples. In Chapter R we saw that some expressions factor over the set of integers. For example: x 2 − 4 = ( x + 2 ) ( x − 2 ) . Some expressions factor over the set of irrational numbers. For example: x 2 − 5 = ( x + 5 ) ( x − 5 ) . To factor an expression such as x2 1 4, we need to factor over the set of complex numbers. For example, verify that x 2 + 4 = ( x + 2 i ) ( x − 2 i ) . a. x 2 − 11 b. x 2 + 11
For Exercises 105–110, factor the expressions over the set of complex numbers. For assistance, consider these examples. In Chapter R we saw that some expressions factor over the set of integers. For example: x 2 − 4 = ( x + 2 ) ( x − 2 ) . Some expressions factor over the set of irrational numbers. For example: x 2 − 5 = ( x + 5 ) ( x − 5 ) . To factor an expression such as x2 1 4, we need to factor over the set of complex numbers. For example, verify that x 2 + 4 = ( x + 2 i ) ( x − 2 i ) . a. x 2 − 11 b. x 2 + 11
Solution Summary: The author explains how to calculate the factor of the expression x2-11.
For Exercises 105–110, factor the expressions over the set of complex numbers. For assistance, consider these examples.
In Chapter R we saw that some expressions factor over the set of integers. For example:
x
2
−
4
=
(
x
+
2
)
(
x
−
2
)
.
Some expressions factor over the set of irrational numbers. For example:
x
2
−
5
=
(
x
+
5
)
(
x
−
5
)
.
To factor an expression such as x2 1 4, we need to factor over the set of complex numbers. For example, verify that
x
2
+
4
=
(
x
+
2
i
)
(
x
−
2
i
)
.
a.
x
2
−
11
b.
x
2
+
11
Combination of a real number and an imaginary number. They are numbers of the form a + b , where a and b are real numbers and i is an imaginary unit. Complex numbers are an extended idea of one-dimensional number line to two-dimensional complex plane.
Consider the following elevation function for a region of irregular terrain:
z(x, y)
=
1
x² + y²
25
Here, z is the elevation of the terrain over a point (x, y) with x and y being the horizontal coordinates. The
region of interest lies between x = 0 and x = 5, and y 0 and y = 5.
Your tasks are the following:
=
1. Analyze how the elevation changes with respect to x and y. To find the elevation changes, calculate the
partial derivatives of the elevation function z with respect to x and
2. Calculate the total volume of soil above the 0-level (z
region of interest.
=
y.
0). To do so, integrate z(x, y) over the whole
A truck loaded with rocks weighs 14,260 lb. If the truck weighs 8420 lb, how much do the rocks weigh?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.