The pressure at which 95 % of the Oxygen molecules dissociate is to be calculated. Concept introduction: The equilibrium constant K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration. The equilibrium constant depends upon temperature. Law of mass action is applicable on the equilibrium reactions. The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature. The dissociation of the species is denotes by the symbol α . To determine: The pressure at which 95 % of the Oxygen molecules dissociate at the constant temperature.
The pressure at which 95 % of the Oxygen molecules dissociate is to be calculated. Concept introduction: The equilibrium constant K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration. The equilibrium constant depends upon temperature. Law of mass action is applicable on the equilibrium reactions. The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature. The dissociation of the species is denotes by the symbol α . To determine: The pressure at which 95 % of the Oxygen molecules dissociate at the constant temperature.
Solution Summary: The author explains that the equilibrium constant K describes the ratio of the reactant to the product on equilibrium conditions in terms of molar concentration.
Interpretation: The pressure at which
95% of the Oxygen molecules dissociate is to be calculated.
Concept introduction: The equilibrium constant
K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration.
The equilibrium constant depends upon temperature.
Law of mass action is applicable on the equilibrium reactions.
The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature.
The dissociation of the species is denotes by the symbol
α.
To determine: The pressure at which
95% of the Oxygen molecules dissociate at the constant temperature.
6. Match each of the lettered items in the column on
the left with the most appropriate numbered
item(s) in the column on the right. Some of the
numbered items may be used more than once
and some not at all.
a.
Z = 37
1.
b.
Mn
2.
C.
Pr
element in period 5 and group
14
element in period 5 and group
15
d. S
e. [Rn] 7s¹
f.
d block
metal
3. highest metallic character of all
the elements
4. paramagnetic with 5 unpaired
electrons
5. 4f36s2
6. isoelectronic with Ca²+ cation
7.
an alkaline metal
8. an f-block element
Draw all formal charges on the structures below as is and draw 1 resonance structure that is more stable.
Part II. xiao isolated a compound TAD (Ca H 10 N₂) from tobacco and obtained its IR spectrum. Xiao proposed
a chemical structure shown below:
% Transmittance
4000
3500
3000
2500 2000
Wavenumber (cm-1)
1500
1000
(a) Explain why her proposed structure is inconsistent with the IR spectrum obtained
(b) TAD exists as a tautomer of the structure xiao proposed. Draw the structure
and explain why it is more compatible with the obtained spectrum.
(C) what is the possible source for the fairly intense signal at
1621cm1
Chapter 13 Solutions
WebAssign for Zumdahl/Zumdahl/DeCoste's Chemistry, 10th Edition [Instant Access], Single-Term
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell