
Concept explainers
Interpretation:
The relation between molality and molarity is to be derived, and the fact that, for dilute aqueous solutions, molality is equal to molarity is to be proved.
Concept introduction:
Molality is defined as the ratio of the number of moles of the solute to the mass of the solvent (in kilograms). It is expressed as follows:
Here,
Molarity is defined as the ratio of the number of moles of the solute to the volume of the solution (in liters). It is expressed as follows:
Here,
Density is defined as the ratio of mass to volume. It is expressed as follows:
Here,

Answer to Problem 120AP
Solution:
(a)
The relation between molality and molarity has been derived.
(b)
For dilute solutions, molality and molarity are equal.
Explanation of Solution
a)Drive the equation relating the molality and molarity of a solution
The mass of the solvent (in kilograms) is calculated as follows:
Or
Consider
Density is calculated as follows:
Rearrange the above equation for the calculation of mass as follows:
Calculate the mass of the solution from the molarity and its molar mass, as follows:
Number of moles is calculatedas follows:
By substituting equation (3) in equation (2), we will get:
Rearrange the above equation for the calculation of mass as follows:
Substituting these expressions into equation (1),
Or
Molality is defined as the number of moles of the solute divided by the mass of the solvent (in kilograms).
It is expressed as follows:
Rearrange the above equation for the calculation of mass as follows:
Consider
Substituting the above equation back into equation (4) gives the following equation:
Taking the inverse of both sides of the equation gives the following equation:
or
Hence, the above equation is the relation between the molality of a solution to its molarity.
b) For any aqueous solution, molality is equal to molarity.
The density of water is approximately
In dilute solutions,
Consider a
The derived equation reduces to the equation given below:
When the density becomes equal to
Want to see more full solutions like this?
Chapter 13 Solutions
EBK CHEMISTRY
- Highlight the chirality (or stereogenic) center(s) in the given compound. A compound may have one or more stereogenic centers. OH OH OH OH OH OHarrow_forwardUsing wedge-and-dash bonds, modify the bonds on the chiral carbon in the molecule below so the molecule has R stereochemical configuration. NH H Br X टेarrow_forwardProvide photos of models of the following molecules. (Include a key for identification of the atoms) 1,2-dichloropropane 2,3,3-trimethylhexane 2-bromo-3-methybutanearrow_forward
- Please draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardGiven a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





