Connect Hosted by ALEKS Online Access for Elementary Statistics
Connect Hosted by ALEKS Online Access for Elementary Statistics
3rd Edition
ISBN: 9781260373769
Author: William Navidi
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 11RE

Air pollution: Following are measurements of particulate matter (PM) concentration (in micrograms per cubic meter), temperature, in degrees Fahrenheit wind speed in miles per hour, and humidity in percent for 38 days in Denver, Colorado.

Chapter 13, Problem 11RE, Air pollution: Following are measurements of particulate matter (PM) concentration (in micrograms

  1. Let y represent PM, x 1 represent temperature, x 2 represent wind speed, and x 3 represent humidity. Construct the multiple regression equation y ^ = b 0 + b 1 x 1 + b 2 x 2 + b 3 x 3 .
  2. Predict the particulate concentration on a day where the temperature is 40 degrees, the wind speed is 5 miles per hour, and the humidity is 30 percent.
  3. Refer to part (b). Construct a 95% confidence interval for the particulate concentration.
  4. Refer to part (b). Construct a 95% prediction interval for the particulate concentration.
  5. Are all the values in the prediction interval reasonable? Explain.
  6. What percentage of the variation in particulate concentration is explained by the model?
  7. Is the model useful for prediction? Why or why not? Use the α = 0.05 level.
  8. Test H 0 : β 1 = 0 versus H 1 : β 1 0 at the α = 0.05 level. Can you reject H 0 ? Repeat for β 2 and β 3 .

(a)

Expert Solution
Check Mark
To determine

The multiple regression equation y^=b0+b1x1+b2x2+b3x3

Answer to Problem 11RE

  y^=42.5163427+(0.6557601)x1+(3.6607217)x2+(0.5806123)x3

Explanation of Solution

It is known that for estimating coefficient below given formula is used

  b = (X'X)1X'Y

Where,

  b=[b0b1b2b3] And X is the matrix of observations.

Now, using ‘R’ software coefficients are calculated.

  y^=b0+b1x1+b2x2+b3x3y^=42.5163427+(0.6557601)x1+(3.6607217)x2+(0.5806123)x3

(b)

Expert Solution
Check Mark
To determine

The particulate concentration on a day where temperature, wind speed and humidity is (40,5,30)

Answer to Problem 11RE

  y^=19.43604

Explanation of Solution

From part (a)

  y^=42.5163427+(0.6557601)x1+(3.6607217)x2+(0.5806123)x3

Now putting the values of (x1,x2,x3) as (40,5,30) in the above equation.

Using calculator,

  y^=19.43604

(c)

Expert Solution
Check Mark
To determine

The 95% confidence interval for the particulate concentration

Answer to Problem 11RE

The 95% confidence interval for the particulate concentration is given below:

    fittedlowerupper
    20.4784815.1188625.8381
    52.3132641.7167862.90975
    40.0049832.9321547.07781
    24.3918318.8033729.98028
    48.7649638.1080159.42191
    12.631854.86330420.40039
    17.9257712.603923.24764
    23.1888516.0158530.36184
    17.5132610.0608424.96568
    20.1905314.5402825.84077
    53.0333843.3100262.75673
    19.3809211.962226.79964
    11.566643.85062119.28265
    9.1472081.81575716.47866
    25.7736319.6849931.86227
    37.3133429.4915745.13512
    41.4623232.134150.79054
    40.6868331.5905849.78308
    25.3882119.6218631.15456
    20.2909514.1704826.41141
    9.4844330.41296718.5559
    21.8173115.1976628.43697
    22.4082213.9081930.90825
    15.216277.94814622.48438
    17.5694611.0777224.0612
    12.525266.28213118.76839
    14.682557.53886821.82623
    16.8948.88902124.89897
    18.2757310.9999825.55148
    17.173099.30581125.04037
    27.1499421.1884833.11141
    25.1487116.6725233.62489
    24.6650616.5916732.73845
    27.1670418.0774436.25665
    33.6492425.7642641.53423
    43.8054135.6919251.9189
    21.5152517.3256225.70487
    35.6058529.6061441.60555

Explanation of Solution

It is known that,

Confidence interval for dependent variable is given by

  y^h±tα2,n2MSE(1n+(xkx_)2i=1n(Xix2_))

Where,

  y^h is the fitted response variable

  MSE(1n+(xkx_)2i=1n(Xix2_)) is the standard error of the fit

Using ‘R’ programming 95% confidence interval has been calculated.

    fittedlowerupper
    20.4784815.1188625.8381
    52.3132641.7167862.90975
    40.0049832.9321547.07781
    24.3918318.8033729.98028
    48.7649638.1080159.42191
    12.631854.86330420.40039
    17.9257712.603923.24764
    23.1888516.0158530.36184
    17.5132610.0608424.96568
    20.1905314.5402825.84077
    53.0333843.3100262.75673
    19.3809211.962226.79964
    11.566643.85062119.28265
    9.1472081.81575716.47866
    25.7736319.6849931.86227
    37.3133429.4915745.13512
    41.4623232.134150.79054
    40.6868331.5905849.78308
    25.3882119.6218631.15456
    20.2909514.1704826.41141
    9.4844330.41296718.5559
    21.8173115.1976628.43697
    22.4082213.9081930.90825
    15.216277.94814622.48438
    17.5694611.0777224.0612
    12.525266.28213118.76839
    14.682557.53886821.82623
    16.8948.88902124.89897
    18.2757310.9999825.55148
    17.173099.30581125.04037
    27.1499421.1884833.11141
    25.1487116.6725233.62489
    24.6650616.5916732.73845
    27.1670418.0774436.25665
    33.6492425.7642641.53423
    43.8054135.6919251.9189
    21.5152517.3256225.70487
    35.6058529.6061441.60555

(d)

Expert Solution
Check Mark
To determine

The 95% prediction interval for the particulate concentration

Answer to Problem 11RE

The 95% prediction interval for the particulate concentration is given below

    fittedlowerupper
    20.47848-3.3904444.3474
    52.3132626.7538277.87271
    40.0049815.6939864.31598
    24.391830.47048248.31317
    48.7649623.1803974.34954
    12.63185-11.890637.15429
    17.92577-5.934741.78625
    23.18885-1.1514947.52918
    17.51326-6.9108841.93739
    20.19053-3.7453344.12638
    53.0333827.8233978.24336
    19.38092-5.0329643.79479
    11.56664-12.939236.07249
    9.147208-15.240333.53471
    25.773631.73051549.81675
    37.3133412.7739861.8527
    41.4623216.4020866.52256
    40.6868315.7120165.66165
    25.388211.42468449.35174
    20.29095-3.7602544.34214
    9.484433-15.481434.45024
    21.81731-2.3657346.00036
    22.40822-2.3556747.17211
    15.21627-9.1522739.5848
    17.56946-6.5788841.7178
    12.52526-11.557436.60796
    14.68255-9.6491639.01425
    16.894-7.7043741.49236
    18.27573-6.0950842.64654
    17.17309-7.3808141.72699
    27.149943.1387251.16117
    25.148710.39298949.90442
    24.665060.04434949.28577
    27.167042.19464352.13945
    33.649249.08966558.20882
    43.8054119.1715268.4393
    21.51525-2.1184845.14897
    35.6058511.585159.62659

Explanation of Solution

It is known that,

Prediction interval for dependent variable is given by

  y^h±tα2,n2MSE(1+1n+(xkx_)2i=1n(xix_)2)

Where,

  y^h is the fitted response variable

  MSE(1+1n+(xkx_)2i=1n(xix_)2) is the standard error of the prediction

Using ‘R’ programming 95% prediction interval has been calculated.

    fittedlowerupper
    20.47848-3.3904444.3474
    52.3132626.7538277.87271
    40.0049815.6939864.31598
    24.391830.47048248.31317
    48.7649623.1803974.34954
    12.63185-11.890637.15429
    17.92577-5.934741.78625
    23.18885-1.1514947.52918
    17.51326-6.9108841.93739
    20.19053-3.7453344.12638
    53.0333827.8233978.24336
    19.38092-5.0329643.79479
    11.56664-12.939236.07249
    9.147208-15.240333.53471
    25.773631.73051549.81675
    37.3133412.7739861.8527
    41.4623216.4020866.52256
    40.6868315.7120165.66165
    25.388211.42468449.35174
    20.29095-3.7602544.34214
    9.484433-15.481434.45024
    21.81731-2.3657346.00036
    22.40822-2.3556747.17211
    15.21627-9.1522739.5848
    17.56946-6.5788841.7178
    12.52526-11.557436.60796
    14.68255-9.6491639.01425
    16.894-7.7043741.49236
    18.27573-6.0950842.64654
    17.17309-7.3808141.72699
    27.149943.1387251.16117
    25.148710.39298949.90442
    24.665060.04434949.28577
    27.167042.19464352.13945
    33.649249.08966558.20882
    43.8054119.1715268.4393
    21.51525-2.1184845.14897
    35.6058511.585159.62659

(e)

Expert Solution
Check Mark
To determine

The percentage of variation in particulate concentrationas explained by the model.

Answer to Problem 11RE

The percentage of variation in particulate concentrationas explained by the model is 0.497

Explanation of Solution

It is known that,

R-squared (R2) is a statistical measure that represents the proportion of the variance for a dependent variable that's explained by an independent variable or variables in a regression model.

In case of multiple regression, adjusted R-squared is used.

Using ‘R’ programming adjusted R-squared is calculated.

  adj R2=0.497

The percentage of variation in particulate concentration as explained by the model is 0.497

(f)

Expert Solution
Check Mark
To determine

Whether the model is useful for prediction or not.

Explanation of Solution

While fitting the model many regression assumptions like autocorrelation, multi-collinearity, heteroscedasticity etc. have not been checked.

So, one cannot say anything about the efficiency and accuracy. One has to consider some other measure like AIC, BIC etc. apart from adj R2=0.497 to tell whether model is useful for prediction or not.

(g)

Expert Solution
Check Mark
To determine

Whether one can reject H0 or not for the test H0:β1=0 v/s H1:β10

Answer to Problem 11RE

    Coefficients P-value.
    β10.0248
    β27.48e07
    β30.0322

At α=0.05 , it can be clearly seen that all p-values are less than α=0.05 . Hence, null hypothesis will get rejected.

Explanation of Solution

Let’s declare null hypothesis,

  H0:β1=0 V/s

  H1:β10

It is known that for this test, test-statistic is given by

  t=β1^(β1)H0RSS(n2)i=1n(xix_)2~tn2,α

Where,

RSS is residual sum of square

  tn2,α is t- distribution with n2 degree of freedom at alpha level of significance.

Using ‘R’ software p-values for the test is calculated.

    Coefficients P-value.
    β10.0248
    β27.48e07
    β30.0322

At α=0.05 , it can be clearly seen that all p-values are less than α=0.05 . Hence, null hypothesis will get rejected.

‘R’ code:

PM=c(24.6,71.7,13.7,19.5,79.6,6.4,13.9,25.1,21.3,19.0,33.5,37.8,8.0,15.1,27.9,35.4,22.0,45.4,23.7
     ,12.6,7.3,17.4,7.7,14.0,20.8,19.8,13.1,10.5,22.7,24.0,39.1,28.2,41.9,25.7,30.1,49.1,11.5,27.1)
Temperature=c(35.8,41.5,38.1,35.6,35.1,30.8,39.7,44.6,53.8,52.5,48.2,29.6,31.7,41.5,55.1,59.9,62.6,51.3,41.5
              ,36.0,47.9,33.5,25.1,28.5,32.8,36.9,43.7,48.3,54.9,57.8,49.2,51.6,54.2,53.8,60.6,44.2,40.9,39.6)
Wind_Speed=c(4.8,13.3,9.5,6.0,12.7,1.3,2.5,2.6,1.4,3.3,11.9,3.2,3.1,2.0,5.2,8.0,9.3,10.7,6.5
             ,3.0,2.5,3.5,4.5,3.1,4.4,2.7,3.8,4.5,3.6,2.7,4.0,2.5,2.6,2.8,5.7,8.7,3.9,7.3)
Humidity=c(37.8,32.6,39.2,37.2,37.5,52.0,43.5,46.4,33.8,27.9,35.1,53.0,37.8,29.5,22.6,19.4,15.3,17.9,29.1,48.6
           ,19.7,50.9,55.1,47.7,38.7,36.1,25.2,19.4,20.0,20.5,39.2,42.5,38.1,41.6,26.8,43.9,39.5,43.8)


# (a)
linear.model=lm(PM~Temperature+Wind_Speed+Humidity)
summ=summary(linear.model)
summ$coefficients
##                Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) -42.5163427 20.9064691 -2.033645 4.985097e-02
## Temperature   0.6557601  0.2791580  2.349065 2.477066e-02
## Wind_Speed    3.6607217  0.6053612  6.047170 7.480612e-07
## Humidity      0.5806123  0.2598741  2.234206 3.215189e-02
#(b)
y=-42.5163427+(0.6557601)*40+( 3.6607217)*5+(0.5806123)*30
y
## [1] 19.43604
#(c)
predict(linear.model, interval ='confidence')
##          fit        lwrupr
## 1  20.478479 15.1188573 25.83810
## 2  52.313262 41.7167782 62.90975
## 3  40.004976 32.9321466 47.07781
## 4  24.391825 18.8033699 29.98028
## 5  48.764964 38.1080145 59.42191
## 6  12.631847  4.8633035 20.40039
## 7  17.925773 12.6039026 23.24764
## 8  23.188846 16.0158506 30.36184
## 9  17.513258 10.0608350 24.96568
## 10 20.190528 14.5402823 25.84077
## 11 53.033375 43.3100223 62.75673
## 12 19.380918 11.9621970 26.79964
## 13 11.566635  3.8506207 19.28265
## 14  9.147208  1.8157572 16.47866
## 15 25.773630 19.6849908 31.86227
## 16 37.313340 29.4915657 45.13512
## 17 41.462320 32.1341000 50.79054
## 18 40.686834 31.5905824 49.78308
## 19 25.388211 19.6218624 31.15456
## 20 20.290945 14.1704778 26.41141
## 21  9.484433  0.4129668 18.55590
## 22 21.817313 15.1976555 28.43697
## 23 22.408222 13.9081921 30.90825
## 24 15.216265  7.9481455 22.48438
## 25 17.569461 11.0777219 24.06120
## 26 12.525258  6.2821313 18.76839
## 27 14.682547  7.5388682 21.82623
## 28 16.893997  8.8890210 24.89897
## 29 18.275732 10.9999846 25.55148
## 30 17.173093  9.3058109 25.04037
## 31 27.149944 21.1884829 33.11141
## 32 25.148706 16.6725233 33.62489
## 33 24.665061 16.5916728 32.73845
## 34 27.167044 18.0774358 36.25665
## 35 33.649244 25.7642561 41.53423
## 36 43.805413 35.6919222 51.91890
## 37 21.515247 17.3256230 25.70487
## 38 35.605845 29.6061374 41.60555
#(d)
predict(linear.model, interval ='prediction')
## Warning in predict.lm(linear.model, interval = "prediction"): predictions on current data refer to _future_ responses
##          fit          lwrupr
## 1  20.478479  -3.39044242 44.34740
## 2  52.313262  26.75381513 77.87271
## 3  40.004976  15.69397519 64.31598
## 4  24.391825   0.47048157 48.31317
## 5  48.764964  23.18039033 74.34954
## 6  12.631847 -11.89059426 37.15429
## 7  17.925773  -5.93469948 41.78625
## 8  23.188846  -1.15148528 47.52918
## 9  17.513258  -6.91087916 41.93739
## 10 20.190528  -3.74532639 44.12638
## 11 53.033375  27.82338810 78.24336
## 12 19.380918  -5.03295643 43.79479
## 13 11.566635 -12.93921571 36.07249
## 14  9.147208 -15.24028905 33.53471
## 15 25.773630   1.73051529 49.81675
## 16 37.313340  12.77398400 61.85270
## 17 41.462320  16.40208203 66.52256
## 18 40.686834  15.71201353 65.66165
## 19 25.388211   1.42468407 49.35174
## 20 20.290945  -3.76025018 44.34214
## 21  9.484433 -15.48137046 34.45024
## 22 21.817313  -2.36573281 46.00036
## 23 22.408222  -2.35567035 47.17211
## 24 15.216265  -9.15226841 39.58480
## 25 17.569461  -6.57888343 41.71780
## 26 12.525258 -11.55744274 36.60796
## 27 14.682547  -9.64916086 39.01425
## 28 16.893997  -7.70436657 41.49236
## 29 18.275732  -6.09507770 42.64654
## 30 17.173093  -7.38080679 41.72699
## 31 27.149944   3.13872014 51.16117
## 32 25.148706   0.39298914 49.90442
## 33 24.665061   0.04434892 49.28577
## 34 27.167044   2.19464261 52.13945
## 35 33.649244   9.08966541 58.20882
## 36 43.805413  19.17152225 68.43930
## 37 21.515247  -2.11847504 45.14897
## 38 35.605845  11.58509698 59.62659
#(e)
summ$adj.r.squared
## [1] 0.4969786
# (f), (g)
summ$coefficients
##                Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) -42.5163427 20.9064691 -2.033645 4.985097e-02
## Temperature   0.6557601  0.2791580  2.349065 2.477066e-02
## Wind_Speed    3.6607217  0.6053612  6.047170 7.480612e-07
## Humidity      0.5806123  0.2598741  2.234206 3.215189e-02

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Need help answering wuestion
The following table shows a data set containing information for 25 of the shadow stocks tracked by the American Association of Individual Investors (aaii.com, February 2002). Shadow stocks are common stocks of smaller companies that are not closely followed by Wall Street analysts. Click on the datafile logo to reference the data. DATA file Company DeWolfe Companies Exchange Ticker Symbol Market Cap ($ millions) Price/ Gross Profit Earnings Ratio Margin (%) AMEX DWL 36.4 8.4 36.7 North Coast Energy OTC NCEB 52.5 6.2 59.3 Hansen Natural Corp. OTC HANS 41.1 14.6 44.8 MarineMax, Inc. NYSE HZO 111.5 7.2 23.8 Nanometrics Incorporated OTC NANO 228.6 38.0 53.3 TeamStaff, Inc. OTC TSTF 92.1 33.5 4.1 Environmental Tectonics AMEX ETC 51.1 35.8 35.9 Measurement Specialties AMEX MSS 101.8 26.8 37.6 SEMCO Energy, Inc. NYSE SEN 193.4 18.7 23.6 Party City Corporation OTC PCTY 97.2 15.9 36.4 Embrex, Inc. OTC EMBX 136.5 18.9 59.5 Tech/Ops Sevcon, Inc. AMEX ΤΟ 23.2 20.7 35.7 ARCADIS NV OTC ARCAF 173.4…
The following table shows a data set containing information for 25 of the shadow stocks tracked by the American Association of Individual Investors (aaii.com, February 2002). Shadow stocks are common stocks of smaller companies that are not closely followed by Wall Street analysts. Click on the datafile logo to reference the data. DATA file Company DeWolfe Companies Exchange AMEX Ticker Symbol Market Cap Price/ Gross Profit Earnings Margin ($ millions) Ratio (%) DWL 36.4 8.4 36.7 North Coast Energy OTC NCEB 52.5 6.2 59.3 Hansen Natural Corp. OTC HANS 41.1 14.6 44.8 MarineMax, Inc. NYSE HZO 111.5 7.2 23.8 Nanometrics Incorporated OTC NANO 228.6 38.0 53.3 TeamStaff, Inc. OTC TSTF 92.1 33.5 4.1 Environmental Tectonics AMEX ETC 51.1 35.8 35.9 Measurement Specialties AMEX MSS 101.8 26.8 37.6 SEMCO Energy, Inc. NYSE SEN 193.4 18.7 23.6 Party City Corporation OTC PCTY 97.2 15.9 36.4 Embrex, Inc. OTC EMBX 136.5 18.9 59.5 Tech/Ops Sevcon, Inc. AMEX ΤΟ 23.2 20.7 35.7 ARCADIS NV OTC ARCAF 173.4…

Chapter 13 Solutions

Connect Hosted by ALEKS Online Access for Elementary Statistics

Ch. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 26aECh. 13.1 - Calculator display: The following TI-84 Plus...Ch. 13.1 - Prob. 28aECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Confidence interval for the conditional mean: In...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Dry up: Use the data in Exercise 26 in Section...Ch. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - In Exercises 9 and 10, determine whether the...Ch. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - For the following data set: Construct the multiple...Ch. 13.3 - Engine emissions: In a laboratory test of a new...Ch. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13 - A confidence interval for 1 is to be constructed...Ch. 13 - A confidence interval for a mean response and a...Ch. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Construct a 95% confidence interval for 1.Ch. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 1RECh. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Air pollution: Following are measurements of...Ch. 13 - Icy lakes: Following are data on maximum ice...Ch. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 1WAICh. 13 - Prob. 2WAICh. 13 - Prob. 1CSCh. 13 - Prob. 2CSCh. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CSCh. 13 - Prob. 6CSCh. 13 - Prob. 7CS
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY