(a)
To determine: The equilibrium constant for the reaction for formation of glucose 6-phosphate at 37°C and whether this reaction is a reasonable
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(a)

Explanation of Solution
The reaction for the formation of glucose-6-phosphate by reaction of inorganic phosphate and glucose is as follows:
The value of gas constant R is 0.0083 kJ/ mole K. The equilibrium constant at the given temperature 37°C (310 K) is calculated as follows-
The value of equilibrium constant of glucose-6-phosphate is determined as follows:
The given reaction will not be favorable based on the levels of glucose in a cell, as it will exceed the concentration of
(b)
To determine: Whether the route is physiologically reasonable when the maximum solubility of glucose is less than 1M.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(b)

Explanation of Solution
The value of equilibrium constant is also determined as follows:
This route will be unfavorable because the given concentration of glucose exceeds the permissible limit of 1M. The concentration of glucose at given conditions is 11 M and the reaction will not be physiologically feasible because the maximum limit is exceeded by given concentration of glucose.
(c1)
To determine: The
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(c1)

Explanation of Solution
The two given
The value of gas constant R is 0.0083 kJ/ mole K. The equilibrium constant at the given temperature 37°C (310 K) is calculated as follows-
The
(c2)
To determine: The concentration of glucose needed to achieve 250 mM intracellular concentration of glucose-6-phosphate when the concentrations of ATP and ADP are 3.3 mM and 1.32 mM.
Introduction:
The glycolysis is the process of series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A).
(c2)

Explanation of Solution
The value of equilibrium constant is determined as follows:
The concentration of glucose needed is
(c3)
To discuss: Whether this coupling process provides feasible route at least in principle for phosphorylation of glucose in the cell.
Introduction:
The glycolysis is the process of series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A).
(c3)

Explanation of Solution
This route will be favorable because the given concentration of glucose does not exceed the permissible limit of 1 M. The coupling process will be feasible for given route for phosphorylation of glucose in the cell.
(d)
To determine: Whether the route is reasonable given that the coupling requires a common intermediate, the route uses ATP hydrolysis to raise the intracellular concentration of Pi.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(d)

Explanation of Solution
The high levels of phosphates are needed for the precipitation of divalent cations of phosphate salts under normal physiological conditions, and thus, the condition will not be possible. Therefore, the given route is not reasonable for the requirement of common intermediate in coupling.
(e)
To determine: The advantages of route of transfer of phosphate group by ATP to glucose by enzyme glucokinase.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(e)

Explanation of Solution
This reaction of transfer of phosphate group to glucose by ATP is catalyzed by glucokinase. The phosphate group is transferred and the potential of ATP is used and generation of high levels of intermediate molecules is not required. The reaction is catalyzed by glucokinase and no intermediates are formed by utilization of potential of ATP.
Want to see more full solutions like this?
Chapter 13 Solutions
Lehninger Principles Of Biochemistry 7e & Study Guide And Solutions Manual For Lehninger Principles Of Biochemistry 7e
- 1. Below is a template strand of DNA. Show the mRNA and protein that would result. label the ends of the molecules ( refer to attached image)arrow_forwardAttach the followina labels to the diagram below: helicase, single stranded binding proteins, lagging strand, leading strand, DNA polymerase, primase, 5' ends (3), 3' ends (3) (image attached)arrow_forward1. How much energy in terms of ATP can be obtained from tristearin (stearate is 18:0) Show steps pleasearrow_forward
- Multiple choice urgent!!arrow_forward1. Write the transamination reaction for alanine. Indicate what happens next to each of the molecules in the reaction, and under what conditions it happens. 2.arrow_forwardCH3 17. Which one of the compounds below is the HNO3 H2 1. NaNO2, HCI Br₂ 1. LiAlH4 major organic product H2SO4 Ni 2. CuCN, KCN FeBr3 2. H₂O, H+ obtained from the following series of reactions? CH3 toluene CH3 CH3 Br Br Br CH3 CH3 && Br Br NH₂ A NH₂ NH₂ B C NH₂ ΝΗΣ D Earrow_forward
- 13. Which one of the compounds below is the major organic product obtained from the following series of reactions? A + H2C=CH-CO Me heat (CH3)2NH 1. LiAlH4 2. H₂O ? 1,3-butadiene OH 'N' B C 14. Which one of the compounds below is the major organic product obtained from the following series of reactions? 'N' D 'N' E 1. XS CH3I 'N' 2. Ag₂O 3. H₂O, A A B с D E Narrow_forwardA NH2 NH2 B C H₂N. NH₂ D 5. The five compounds above all have molecular weights close to 75 g/mol. Which one has the highest boiling point? 6. The five compounds above all have molecular weights close to 75 g/mol. Which one has the lowest boiling point? E NH₂arrow_forward7. A solution of aniline in diethyl ether is added to a separatory funnel. Which ONE of the following aqueous solutions will remove aniline from the ether layer (and transfer it to the aqueous layer) if it is added to the separatory funnel and the funnel is shaken? A) aqueous NH3 B) aqueous Na2CO3 C) aqueous HCl D) aqueous NaOH E) aqueous CH3COONa (sodium acetate)arrow_forward
- 11. Which of the following choices is the best reagent to use to perform the following conversion? A) 1. LiAlH4 2. H₂O B) HCI, H₂O D) NaOH, H₂O E) Na№3 ? 'N' 'N' C) 1. CH3MgBr 2. HCI, H₂Oarrow_forwardNH2 ΝΗΣ NH₂ NH2 NH2 A OCH3 NO₂ B C D E 1. Which one of the five compounds above is the strongest base? 2. Which one of the five compounds above is the second-strongest base? (That is, which one is next-to-strongest base?) 3. Which one of the five compounds above is the weakest base? 4. Which one of the five compounds above is the second-weakest base? (That is, which one is next-to-weakest base?) NO2arrow_forwardDraw a diagram to demonstrate 3' to 5' exonuclease activity?arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





