Free-Falling Object In Exercises 103 and 104, use the position function s ( t ) = − 4.9 t 2 + 200 , which gives the height (in meters) of an object that has fallen for t seconds from a height of 200 meters. The velocity at time t = a seconds is given by lim t → a s ( a ) − s ( t ) a − t Find the velocity of the object when t = 3 .
Free-Falling Object In Exercises 103 and 104, use the position function s ( t ) = − 4.9 t 2 + 200 , which gives the height (in meters) of an object that has fallen for t seconds from a height of 200 meters. The velocity at time t = a seconds is given by lim t → a s ( a ) − s ( t ) a − t Find the velocity of the object when t = 3 .
Free-Falling Object In Exercises 103 and 104, use the position function
s
(
t
)
=
−
4.9
t
2
+
200
, which gives the height (in meters) of an object that has fallen for t seconds from a height of 200 meters. The velocity at time
t
=
a
Distance between cars At noon, car A is 10 feet to the right
and 20 feet ahead of car B, as shown in the figure. If car A
continues at 88 ft/sec (or 60 mi/hr) while car B continues at
66 f/sec (or 45 mi/hr), express the distance d between the
cars as a function of t, where t denotes the number of sec-
onds after noon.
Exercise 78
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY