
Basic Technical Mathematics
11th Edition
ISBN: 9780134437705
Author: Washington
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.7, Problem 6E
(a)
To determine
The magnitude of the impedance from the point a to d.
(b)
To determine
The phase angle between the current and the voltage for the given combination.
(c)
To determine
The magnitude of the voltage across the combination given in part (a).
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
> > >
we are
hiring
Salesforce Admin
Location: Remote
Key Responsibilities:
Administer Salesforce Sales & Revenue Cloud (CPQ & Billing)
Configure workflows, validation rules & dashboards
Automate processes using Flows & Process Builder
Collaborate with Sales, Finance & Marketing teams
Manage user roles & security
Apply: Hr@forcecraver.com
3:59 m s
☑
D'Aniello Boutique | Fashion
VOLTE
danielloboutique.it/asia
SUBSCRIBE NOW: 10% OFF TO USE ANYTIME YOU WANT
d'aniello
NEW IN WOMEN
NEW IN MEN
WINTER SALE: 50%
OFF on FW24
SHOP WOMEN
SHOP MEN
JOB UPDATE
EMERSON
GRAD ENGINEER
(FRESHERS)
SOFTWARE ENGG
NEW RELIC
BROWSERSTACK
(FRESHERS)
SOFTWARE ENGG
FULL STACK
DATA ENGINEER
GENPACT
+ PYTHON
CARS24
WORK FROM HOME
#vinkjobs
TELE
PERFORMANCE
Vinkjobs.com
CUSTOMER
SUPPORT
Search "Vinkjobs.com" on Google
Chapter 12 Solutions
Basic Technical Mathematics
Ch. 12.1 - Write in terms of j.
Ch. 12.1 - Simplify: 2.
Ch. 12.1 - Simplify: 2.
Ch. 12.1 - Prob. 4PECh. 12.1 - Prob. 5PECh. 12.1 - Prob. 1ECh. 12.1 - Prob. 2ECh. 12.1 - Prob. 3ECh. 12.1 - In Exercises 1–4, perform the indicated operations...Ch. 12.1 - In Exercises 5–16, express each number in terms of...
Ch. 12.1 - In Exercises 5–16, express each number in terms of...Ch. 12.1 - In Exercises 5–16, express each number in terms of...Ch. 12.1 - Prob. 8ECh. 12.1 - Prob. 9ECh. 12.1 - Prob. 10ECh. 12.1 - Prob. 11ECh. 12.1 - Prob. 12ECh. 12.1 - Prob. 13ECh. 12.1 - Prob. 14ECh. 12.1 - Prob. 15ECh. 12.1 - Prob. 16ECh. 12.1 - In Exercises 17–32, simplify each of the given...Ch. 12.1 - Prob. 18ECh. 12.1 - Prob. 19ECh. 12.1 - Prob. 20ECh. 12.1 - Prob. 21ECh. 12.1 - Prob. 22ECh. 12.1 - Prob. 23ECh. 12.1 - Prob. 24ECh. 12.1 - In Exercises 17–32, simplify each of the given...Ch. 12.1 - Prob. 26ECh. 12.1 - Prob. 27ECh. 12.1 - Prob. 28ECh. 12.1 - Prob. 29ECh. 12.1 - Prob. 30ECh. 12.1 - Prob. 31ECh. 12.1 - Prob. 32ECh. 12.1 - Prob. 33ECh. 12.1 - Prob. 34ECh. 12.1 - Prob. 35ECh. 12.1 - Prob. 36ECh. 12.1 - Prob. 37ECh. 12.1 - Prob. 38ECh. 12.1 - Prob. 39ECh. 12.1 - Prob. 40ECh. 12.1 - Prob. 41ECh. 12.1 - Prob. 42ECh. 12.1 - Prob. 43ECh. 12.1 - Prob. 44ECh. 12.1 - Prob. 45ECh. 12.1 - Prob. 46ECh. 12.1 - Prob. 47ECh. 12.1 - Prob. 48ECh. 12.1 - Prob. 49ECh. 12.1 - In Exercises 33–50, perform the indicated...Ch. 12.1 - Prob. 51ECh. 12.1 - Prob. 52ECh. 12.1 - Prob. 53ECh. 12.1 - Prob. 54ECh. 12.1 - Prob. 55ECh. 12.1 - Prob. 56ECh. 12.1 - Prob. 57ECh. 12.1 - Prob. 58ECh. 12.1 - In Exercises 55–60, find the values of x and y...Ch. 12.1 - In Exercises 55–60, find the values of x and y...Ch. 12.1 - Prob. 61ECh. 12.1 - Prob. 62ECh. 12.1 - Prob. 63ECh. 12.1 - Prob. 64ECh. 12.1 - Prob. 65ECh. 12.1 - Prob. 66ECh. 12.1 - Prob. 67ECh. 12.1 - Prob. 68ECh. 12.1 - Prob. 69ECh. 12.1 - Prob. 70ECh. 12.1 - Prob. 71ECh. 12.1 - Prob. 72ECh. 12.1 - Prob. 73ECh. 12.1 - Prob. 74ECh. 12.2 - Prob. 1PECh. 12.2 - Prob. 2PECh. 12.2 - Prob. 3PECh. 12.2 - Prob. 1ECh. 12.2 - Prob. 2ECh. 12.2 - In Exercises 1-4, perform the indicated operations...Ch. 12.2 - Prob. 4ECh. 12.2 - In Exercises 5–38, perform the indicated...Ch. 12.2 - Prob. 6ECh. 12.2 - In Exercises 5–38, perform the indicated...Ch. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - Prob. 10ECh. 12.2 - Prob. 11ECh. 12.2 - In Exercises 5–38, perform the indicated...Ch. 12.2 - In Exercises 5–38, perform the indicated...Ch. 12.2 - Prob. 14ECh. 12.2 - In Exercises 5–38, perform the indicated...Ch. 12.2 - Prob. 16ECh. 12.2 - Prob. 17ECh. 12.2 - In Exercises 5–38, perform the indicated...Ch. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - Prob. 21ECh. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - Prob. 25ECh. 12.2 - Prob. 26ECh. 12.2 - Prob. 27ECh. 12.2 - Prob. 28ECh. 12.2 - Prob. 29ECh. 12.2 - Prob. 30ECh. 12.2 - Prob. 31ECh. 12.2 - Prob. 32ECh. 12.2 - Prob. 33ECh. 12.2 - Prob. 34ECh. 12.2 - Prob. 35ECh. 12.2 - Prob. 36ECh. 12.2 - Prob. 37ECh. 12.2 - Prob. 38ECh. 12.2 - Prob. 39ECh. 12.2 - Prob. 40ECh. 12.2 - Prob. 41ECh. 12.2 - Prob. 42ECh. 12.2 - Prob. 43ECh. 12.2 - Prob. 44ECh. 12.2 - Prob. 45ECh. 12.2 - Prob. 46ECh. 12.2 - Prob. 47ECh. 12.2 - Prob. 48ECh. 12.2 - Prob. 49ECh. 12.2 - In Exercises 43–56, solve the given...Ch. 12.2 - Prob. 51ECh. 12.2 - Prob. 52ECh. 12.2 - Prob. 53ECh. 12.2 - Prob. 54ECh. 12.2 - Prob. 55ECh. 12.2 - Prob. 56ECh. 12.2 - Prob. 57ECh. 12.2 - Prob. 58ECh. 12.2 - Prob. 59ECh. 12.2 - Prob. 60ECh. 12.2 - In Exercises 61-64, answer or explain as...Ch. 12.2 - Prob. 62ECh. 12.2 - Prob. 63ECh. 12.2 - Prob. 64ECh. 12.3 - Prob. 1ECh. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Prob. 5ECh. 12.3 - Prob. 6ECh. 12.3 - Prob. 7ECh. 12.3 - Prob. 8ECh. 12.3 - Prob. 9ECh. 12.3 - Prob. 10ECh. 12.3 - Prob. 11ECh. 12.3 - Prob. 12ECh. 12.3 - Prob. 13ECh. 12.3 - Prob. 14ECh. 12.3 - Prob. 15ECh. 12.3 - Prob. 16ECh. 12.3 - Prob. 17ECh. 12.3 - Prob. 18ECh. 12.3 - Prob. 19ECh. 12.3 - Prob. 20ECh. 12.3 - Prob. 21ECh. 12.3 - Prob. 22ECh. 12.3 - Prob. 23ECh. 12.3 - Prob. 24ECh. 12.3 - Prob. 25ECh. 12.3 - Prob. 26ECh. 12.3 - Prob. 27ECh. 12.3 - Prob. 28ECh. 12.3 - Prob. 29ECh. 12.3 - Prob. 30ECh. 12.3 - Prob. 31ECh. 12.3 - Prob. 32ECh. 12.3 - Prob. 33ECh. 12.3 - Prob. 34ECh. 12.3 - Prob. 35ECh. 12.3 - Prob. 36ECh. 12.3 - Prob. 37ECh. 12.3 - Prob. 38ECh. 12.4 - Prob. 1PECh. 12.4 - Prob. 2PECh. 12.4 - Prob. 3PECh. 12.4 - Prob. 1ECh. 12.4 - In Exercises 1 and 2, change the sign of the real...Ch. 12.4 - Prob. 3ECh. 12.4 - Prob. 4ECh. 12.4 - Prob. 5ECh. 12.4 - Prob. 6ECh. 12.4 - Prob. 7ECh. 12.4 - In Exercises 3-18, represent each complex number...Ch. 12.4 - Prob. 9ECh. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - Prob. 17ECh. 12.4 - Prob. 18ECh. 12.4 - In Exercises 19-36, represent each complex number...Ch. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.4 - Prob. 25ECh. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.4 - In Exercises 19-36, represent each complex number...Ch. 12.4 - Prob. 30ECh. 12.4 - Prob. 31ECh. 12.4 - Prob. 32ECh. 12.4 - Prob. 33ECh. 12.4 - Prob. 34ECh. 12.4 - In Exercises 19-36, represent each complex number...Ch. 12.4 - Prob. 36ECh. 12.4 - Prob. 37ECh. 12.4 - Prob. 38ECh. 12.4 - Prob. 39ECh. 12.4 - Prob. 40ECh. 12.4 - In Exercises 37–44, solve the given problems.
41....Ch. 12.4 - In Exercises 37–44, solve the given problems.
42....Ch. 12.4 - Prob. 43ECh. 12.4 - Prob. 44ECh. 12.5 - Prob. 1PECh. 12.5 - Prob. 2PECh. 12.5 - Represent 3.00e2.66j in rectangular form.
Ch. 12.5 - Prob. 1ECh. 12.5 - Prob. 2ECh. 12.5 - In Exercises 3-22, express the given numbers in...Ch. 12.5 - In Exercises 3-22, express the given numbers in...Ch. 12.5 - Prob. 5ECh. 12.5 - Prob. 6ECh. 12.5 - Prob. 7ECh. 12.5 - Prob. 8ECh. 12.5 - In Exercises 3-22, express the given numbers in...Ch. 12.5 - Prob. 10ECh. 12.5 - Prob. 11ECh. 12.5 - Prob. 12ECh. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - In Exercises 3-22, express the given numbers in...Ch. 12.5 - Prob. 16ECh. 12.5 - Prob. 17ECh. 12.5 - Prob. 18ECh. 12.5 - Prob. 19ECh. 12.5 - Prob. 20ECh. 12.5 - Prob. 21ECh. 12.5 - Prob. 22ECh. 12.5 - Prob. 23ECh. 12.5 - In Exercises 23–30, express the given complex...Ch. 12.5 - Prob. 25ECh. 12.5 - Prob. 26ECh. 12.5 - In Exercises 23–30, express the given complex...Ch. 12.5 - Prob. 28ECh. 12.5 - Prob. 29ECh. 12.5 - Prob. 30ECh. 12.5 - In Exercises 31–34, perform the indicated...Ch. 12.5 - Prob. 32ECh. 12.5 - Prob. 33ECh. 12.5 - Prob. 34ECh. 12.5 - Prob. 35ECh. 12.5 - Prob. 36ECh. 12.5 - In Exercises 35–40, perform the indicated...Ch. 12.5 - Prob. 38ECh. 12.5 - Prob. 39ECh. 12.5 - In Exercises 35–40, perform the indicated...Ch. 12.6 - Prob. 1PECh. 12.6 - Prob. 2PECh. 12.6 - Find the polar form power: (3 cos 50°)8
Ch. 12.6 - Prob. 4PECh. 12.6 - Prob. 1ECh. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - Prob. 5ECh. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - Prob. 9ECh. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - Prob. 12ECh. 12.6 - Prob. 13ECh. 12.6 - Prob. 14ECh. 12.6 - Prob. 15ECh. 12.6 - Prob. 16ECh. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.6 - Prob. 21ECh. 12.6 - Prob. 22ECh. 12.6 - Prob. 23ECh. 12.6 - Prob. 24ECh. 12.6 - Prob. 25ECh. 12.6 - Prob. 26ECh. 12.6 - Prob. 27ECh. 12.6 - Prob. 28ECh. 12.6 - Prob. 29ECh. 12.6 - Prob. 30ECh. 12.6 - Prob. 31ECh. 12.6 - Prob. 32ECh. 12.6 - Prob. 33ECh. 12.6 - Prob. 34ECh. 12.6 - Prob. 35ECh. 12.6 - Prob. 36ECh. 12.6 - Prob. 37ECh. 12.6 - In Exercises 35–40, use DeMoivre’s theorem to find...Ch. 12.6 - Prob. 39ECh. 12.6 - Prob. 40ECh. 12.6 - Prob. 41ECh. 12.6 - Prob. 42ECh. 12.6 - Prob. 43ECh. 12.6 - Prob. 44ECh. 12.6 - In Exercises 41–46, find all of the roots of the...Ch. 12.6 - Prob. 46ECh. 12.6 - Prob. 47ECh. 12.6 - Prob. 48ECh. 12.6 - Prob. 49ECh. 12.6 - Prob. 50ECh. 12.6 - Prob. 51ECh. 12.6 - Prob. 52ECh. 12.6 - The electric power p (in W) supplied to an element...Ch. 12.6 - Prob. 54ECh. 12.6 - Prob. 55ECh. 12.6 - Prob. 56ECh. 12.7 - Prob. 1PECh. 12.7 - Prob. 1ECh. 12.7 - Prob. 2ECh. 12.7 - Prob. 3ECh. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - Prob. 7ECh. 12.7 - Prob. 8ECh. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.7 - Prob. 11ECh. 12.7 - Prob. 12ECh. 12.7 - Prob. 13ECh. 12.7 - Prob. 14ECh. 12.7 - Prob. 15ECh. 12.7 - Prob. 16ECh. 12.7 - Prob. 17ECh. 12.7 - Prob. 18ECh. 12.7 - Prob. 19ECh. 12.7 - Prob. 20ECh. 12.7 - Prob. 21ECh. 12.7 - Prob. 22ECh. 12.7 - Prob. 23ECh. 12.7 - Prob. 24ECh. 12 - Prob. 1RECh. 12 - Prob. 2RECh. 12 - Prob. 3RECh. 12 - Prob. 4RECh. 12 - Prob. 5RECh. 12 - Prob. 6RECh. 12 - Prob. 7RECh. 12 - Prob. 8RECh. 12 - Prob. 9RECh. 12 - Prob. 10RECh. 12 - Prob. 11RECh. 12 - Prob. 12RECh. 12 - Prob. 13RECh. 12 - Prob. 14RECh. 12 - Prob. 15RECh. 12 - Prob. 16RECh. 12 - Prob. 17RECh. 12 - Prob. 18RECh. 12 - Prob. 19RECh. 12 - Prob. 20RECh. 12 - Prob. 21RECh. 12 - Prob. 22RECh. 12 - Prob. 23RECh. 12 - Prob. 24RECh. 12 - Prob. 25RECh. 12 - Prob. 26RECh. 12 - Prob. 27RECh. 12 - Prob. 28RECh. 12 - Prob. 29RECh. 12 - Prob. 30RECh. 12 - Prob. 31RECh. 12 - In Exercises 29–36, give the polar and exponential...Ch. 12 - In Exercises 29–36, give the polar and exponential...Ch. 12 - In Exercises 29–36, give the polar and exponential...Ch. 12 - In Exercises 29–36, give the polar and exponential...Ch. 12 - Prob. 36RECh. 12 - Prob. 37RECh. 12 - In Exercises 37–48, give the rectangular form of...Ch. 12 - In Exercises 37–48, give the rectangular form of...Ch. 12 - In Exercises 37–48, give the rectangular form of...Ch. 12 - In Exercises 37–48, give the rectangular form of...Ch. 12 - Prob. 42RECh. 12 - Prob. 43RECh. 12 - Prob. 44RECh. 12 - In Exercises 37–48, give the rectangular form of...Ch. 12 - Prob. 46RECh. 12 - Prob. 47RECh. 12 - Prob. 48RECh. 12 - Prob. 49RECh. 12 - Prob. 50RECh. 12 - Prob. 51RECh. 12 - Prob. 52RECh. 12 - Prob. 53RECh. 12 - Prob. 54RECh. 12 - Prob. 55RECh. 12 - Prob. 56RECh. 12 - Prob. 57RECh. 12 - Prob. 58RECh. 12 - Prob. 59RECh. 12 - Prob. 60RECh. 12 - Prob. 61RECh. 12 - Prob. 62RECh. 12 - Prob. 63RECh. 12 - Prob. 64RECh. 12 - Prob. 65RECh. 12 - Prob. 66RECh. 12 - Prob. 67RECh. 12 - Prob. 68RECh. 12 - Prob. 69RECh. 12 - Prob. 70RECh. 12 - Prob. 71RECh. 12 - Prob. 72RECh. 12 - Prob. 73RECh. 12 - Prob. 74RECh. 12 - Prob. 75RECh. 12 - Prob. 76RECh. 12 - Prob. 77RECh. 12 - Prob. 78RECh. 12 - Prob. 79RECh. 12 - Prob. 80RECh. 12 - Prob. 81RECh. 12 - Prob. 82RECh. 12 - Prob. 85RECh. 12 - Prob. 86RECh. 12 - Prob. 87RECh. 12 - Prob. 88RECh. 12 - Prob. 89RECh. 12 - Prob. 90RECh. 12 - Prob. 91RECh. 12 - Prob. 92RECh. 12 - Prob. 93RECh. 12 - Prob. 94RECh. 12 - Prob. 95RECh. 12 - Prob. 96RECh. 12 - Prob. 97RECh. 12 - Prob. 98RECh. 12 - Prob. 99RECh. 12 - Prob. 100RECh. 12 - Prob. 1PTCh. 12 - Multiply, expressing the result in polar...Ch. 12 - Prob. 3PTCh. 12 - Prob. 4PTCh. 12 - Prob. 5PTCh. 12 - Prob. 6PTCh. 12 - Express 2.56(cos 125.2° + j sin 125.2°) in...Ch. 12 - Prob. 8PTCh. 12 -
Express 3.47 − 2.81j in exponential form.
Ch. 12 - Prob. 10PTCh. 12 - Prob. 11PTCh. 12 - Prob. 12PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Find the first four nonzero terms in a power series expansion about x=0 for a general solution to the given differential equation w''-14x^2w'+w=0arrow_forwardLet X represent the full height of a certain species of tree. Assume that X has a normal probability distribution with mean 203.8 ft and standard deviation 43.8 ft. You intend to measure a random sample of n = 211trees. The bell curve below represents the distribution of these sample means. The scale on the horizontal axis (each tick mark) is one standard error of the sampling distribution. Complete the indicated boxes, correct to two decimal places. Image attached. I filled in the yellow boxes and am not sure why they are wrong. There are 3 yellow boxes filled in with values 206.82; 209.84; 212.86.arrow_forwardAnswer this questionarrow_forward
- In this exercise, we will investigate a technique to prove that a language is notregular. This tool is called the pumping lemma.The pumping lemma says that if M = (S, I, f, s0, F ) is a DFA with p states (i.e., p = |S|) and if the wordw is in L(M ) (the language generated by M ) and w has length greater than or equal to p, then w may bedivided into three pieces, w = xyz, satisfying the following conditions:1. For each i ∈ N, xy^i z ∈ L(M ).2. |y| > 0 (i.e., y contains at least one character).3. |xy| ≤ p (i.e., the string xy has at most p characters). Use the pumping lemma to show the following language is not regular (HINT: Use proof by contradictionto assume the language is regular and apply the pumping lemma to the language):L = {0^k1^k | k ∈ N}arrow_forwardA prefix of length ℓ of some word w are the first ℓ characters (in order) of w.1. Construct a context-free grammar for the language: L = {w ∈ {a, b}∗ | every prefix of w has at least as many a’s as b’s}2. Explain why every word generated by your context-free grammar (in Part 1) is contained in L. Then,prove via induction that every w ∈ L is produced by your context-free grammar.arrow_forwardConsider a simplified version of American football where on any possession ateam can earn 0, 3 or 7 points. What is the smallest number n0 of points such that for all n ≥ n0 and n ∈ Na team could earn n points. You must prove that your answer is correct via induction (HINT: Don’t forgetto show that n0 is the smallest number above which any number of points is reachable).arrow_forward
- Consider a vocabulary consisting of the nucleotide bases V = {A, T, G, C}.Construct a DFA to recognize strings which end in AAGT .(a) Draw the DFA with clear markings of all states including start and acceptance state(s).(b) Simulate the DFA to show that string T GAAGT will be accepted by the DFA.(c) Simulate the DFA to show that string T AAGT G will not be accepted by the DFA.arrow_forwardA palindrome is a string that reads the same backward as it does forward. For example, abaaaba is a palindrome. Suppose that we need to define a language that generates palindromes.(a) Define a phase structure grammar that generates the set of all palindromes over the alphabet {a, b}clearly describing the recursive rules that generates palindromes. Use the notation Symbol → rule. Theempty set is denoted by λ. Clearly identify the terminal and non-terminal symbols in your grammar.(b) Show that the palindrome abaaaba can be recognized by your grammar. To show this, show all stepsof parsing the expression abaaaba using the rules you defined above.arrow_forwardA full k-ary tree is a (rooted) tree whose nodes either have exactly k children (internal nodes) or have no children (leaves). Using structural induction, formally prove that every full k-ary tree that has x internal nodes has exactly kx + 1 nodes in total. Note that for full binary trees, i.e., when k = 2, this would imply that the total number of nodes is 2x + 1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Trigonometry - Harmonic Motion - Equation Setup; Author: David Hays;https://www.youtube.com/watch?v=BPrZnn3DJ6Q;License: Standard YouTube License, CC-BY
Simple Harmonic Motion - An introduction : ExamSolutions Maths Revision; Author: ExamSolutions;https://www.youtube.com/watch?v=tH2vldyP5OE;License: Standard YouTube License, CC-BY