College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.5, Problem 12.5QQ
To determine
The most probable outcomes after throwing two dice. For a given throw, the two numbers that are face up can have a sum of 2,3,4,5,6,7,8,9,10,11,12 and the most probable outcomes after throwing two dice. For a given throw, the two numbers that are face up can have a sum of 2,3,4,5,6,7,8,9,10,11,12.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
D3
18. The number 235.051 is the sum
from adding 14.3 + 0.001 + 220.75,
following the rules in significant
numbers it will give:
235.051
235
O 235.05
O 235.1
Earth has a mass of 5.98*1024 kg.The average mass of the atoms that make up Earth is 40 u. How many atoms are there in Earth?
Chapter 12 Solutions
College Physics
Ch. 12.1 - By visual inspection, order the PV diagrams shown...Ch. 12.3 - Identify the paths A, B, C, and D in Figure 12.11...Ch. 12.4 - Three engines operate between reservoirs separated...Ch. 12.5 - Which of the following is true for the entropy...Ch. 12.5 - Prob. 12.5QQCh. 12 - Two identical containers each hold 1 mole of an...Ch. 12 - Which one of the following statements is true? (a)...Ch. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - For an ideal gas in an isothermal process, there...
Ch. 12 - An ideal gas undergoes an adiabatic process so...Ch. 12 - Is it possible to construct a heat engine that...Ch. 12 - A heat engine does work Weng while absorbing...Ch. 12 - When a sealed Thermos bottle full of hot coffee is...Ch. 12 - The first law of thermodynamics is U = Q + W. For...Ch. 12 - The first law of thermodynamics says we cant get...Ch. 12 - Objects A and B with TA TB are placed in thermal...Ch. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - An ideal gas is compressed to half its initial...Ch. 12 - A thermodynamic process occurs in which the...Ch. 12 - Prob. 17CQCh. 12 - An ideal gas is enclosed in a cylinder with a...Ch. 12 - Sketch a PV diagram and find the work done by the...Ch. 12 - Gas in a container is at a pressure of 1.5 atm and...Ch. 12 - Find the numeric value of the work done on the gas...Ch. 12 - A gas expands from I to F along the three paths...Ch. 12 - A gas follows the PV diagram in Figure P12.6. Find...Ch. 12 - A sample of helium behaves as an ideal gas as it...Ch. 12 - (a) Find the work done by an ideal gas as it...Ch. 12 - One mole of an ideal gas initially at a...Ch. 12 - (a) Determine the work done on a fluid that...Ch. 12 - A balloon holding 5.00 moles of helium gas absorbs...Ch. 12 - A chemical reaction transfers 1250 J of thermal...Ch. 12 - Prob. 13PCh. 12 - A cylinder of volume 0.300 m3 contains 10.0 mol of...Ch. 12 - A gas expands from I to F in Figure P12.5. The...Ch. 12 - In a running event, a sprinter does 4.8 105 J of...Ch. 12 - A gas is compressed at a constant pressure of...Ch. 12 - A quantity of a monatomic ideal gas undergoes a...Ch. 12 - A gas is enclosed in a container fitted with a...Ch. 12 - A monatomic ideal gas under-goes the thermodynamic...Ch. 12 - An ideal gas is compressed from a volume of Vi =...Ch. 12 - A system consisting of 0.025 6 moles of a diatomic...Ch. 12 - An ideal monatomic gas expands isothermally from...Ch. 12 - An ideal gas expands at constant pressure. (a)...Ch. 12 - An ideal monatomic gas contracts in an isobaric...Ch. 12 - An ideal diatomic gas expands adiabatically from...Ch. 12 - An ideal monatomic gas is contained in a vessel of...Ch. 12 - Consider the cyclic process described by Figure...Ch. 12 - A 5.0-kg block of aluminum is heated from 20C to...Ch. 12 - One mole of gas initially at a pressure of 2.00...Ch. 12 - A gas increases in pressure from 2.00 atm to 6.00...Ch. 12 - An ideal gas expands at a constant pressure of...Ch. 12 - A heat engine operates between a reservoir at 25C...Ch. 12 - A heat engine is being designed to have a Carnot...Ch. 12 - The work done by an engine equals one-fourth the...Ch. 12 - In each cycle of its operation, a heat engine...Ch. 12 - One of the most efficient engines ever built is a...Ch. 12 - A lawnmower engine ejects 1.00 104 J each second...Ch. 12 - An engine absorbs 1.70 kJ from a hot reservoir at...Ch. 12 - A heat pump has a coefficient of performance of...Ch. 12 - A freezer has a coefficient of performance of...Ch. 12 - Prob. 42PCh. 12 - In one cycle a heat engine absorbs 500 J from a...Ch. 12 - A power plant has been proposed that would make...Ch. 12 - Prob. 45PCh. 12 - A heat engine operates in a Carnot cycle between...Ch. 12 - A Styrofoam cup holding 125 g of hot water at 1.00...Ch. 12 - A 65-g ice cube is initially at 0.0C. (a) Find the...Ch. 12 - A freezer is used to freeze 1.0 L of water...Ch. 12 - What is the change in entropy of 1.00 kg of liquid...Ch. 12 - A 70.0-kg log falls from a height of 25.0 m into a...Ch. 12 - A sealed container holding 0.500 kg of liquid...Ch. 12 - Prob. 53PCh. 12 - When an aluminum bar is temporarily connected...Ch. 12 - Prepare a table like Table 12.3 for the following...Ch. 12 - Prob. 56PCh. 12 - Prob. 57PCh. 12 - Prob. 58PCh. 12 - Sweating is one of the main mechanisms with which...Ch. 12 - Prob. 60PCh. 12 - Suppose a highly trained athlete consumes oxygen...Ch. 12 - A Carnot engine operates between the temperatures...Ch. 12 - Prob. 63APCh. 12 - A Carnot engine operates between 100C and 20C. How...Ch. 12 - A substance undergoes the cyclic process shown in...Ch. 12 - When a gas follows path 123 on the PV diagram in...Ch. 12 - Prob. 67APCh. 12 - An ideal gas initially at pressure P0, volume V0,...Ch. 12 - One mole of neon gas is heated from 300. K to 420....Ch. 12 - Every second at Niagara Falls, approximately 5.00 ...Ch. 12 - A cylinder containing 10.0 moles of a monatomic...Ch. 12 - Prob. 72APCh. 12 - Suppose you spend 30.0 minutes on a stair-climbing...Ch. 12 - Hydrothermal vents deep on the ocean floor spout...Ch. 12 - An electrical power plant has an overall...Ch. 12 - A diatomic ideal gas expands from a volume of VA =...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The rate of decay of the radioactive isotope Free Neutron 239 is given by: M = -1.1 x 10-³M where M is the mass of the isotope in grams and t is time measured in minutes. A sample initially contains 3 grams of the isotope. What is the mass of the isotope present in the sample after 320 minutes? The mass is grams. Round your answer to 3 significant figures, if needed. b) How long does it take for the mass of the isotope in the sample to fall to 1.5 gram? It takes t = minutes. Round your answer to the nearest integer if needed.arrow_forwardWe are going to make a simple approximation of the number of atoms in the universe. Assume all the atoms in the universe are hydrogen. (In actual practice, over 75% of the atoms in the universe are hydrogen.) Assume the sun is a typical star (made of pure hydrogen) has a density of 1.4 g/cm3 and is a sphere with a radius of 7.0*108m Assume that there are 100 billion stars in our Milky Way galaxy that are identical to our sun. Assume that there are 10 billion galaxies in the universe identical to our Milky Way galaxy. How many atoms are there in the universe?arrow_forwardThe rhinovirus, one cause of common cold and flu, has a diameter of 30 nm. How many of these particle could line up side by side on a line that is 1.0 inch long?arrow_forward
- Suppose you have a sample of radioactive material that decays with a time constant of 60 minutes. If after 2.0 hourshours there are 3.4×106 atoms of the original material left in the sample, how many atoms N0 of that material were initially in the sample?arrow_forwardThe semi-emprical mass formula is given by M(Z, A) = ZMH+N Mn-ay A+ª5A²/3. z? ac 4!/3 (А-22)? 2, where M(Z, A) is the atomic mass and Mµ is the atomic A mass of hydrohen atom while Mn is the mass of neutron. Explain each term in the formula.arrow_forwardExplain the solution on how to solve this step by step ? Given: 15000ft/s 1200 miles v² sin(20) R = here R = 1200 mile = 1200 × 5280 = 6336000 ft g = 32.2 ft/s? so put the values in the equation %3D (15000)² sin(20) 32.2 6336000 = sin (20) = 6336000x32.2 (15000)? 20 = sin- (0. 9067) 65.06 0 = = 32. 53 = 0 = 32. 53° so now the flight time 2 vsin(0) 2x15000 sin(32.53) T 32.2 T = 501 sec %3Darrow_forward
- One mole of atoms consist of 6.02 × 10^23 individual atoms. If one mole of unicorn atoms were spread uniformly over the surface of a sphere the size of the Earth, approximately how many atoms would be found per square meter? The average radius of the Earth is 6.38 × 10^3 km.arrow_forwardChapter 5, Section 5.8, Question 32 Determine the length of a rectangular trench you can dig with the energy gained from eating one Milky Way bar (270 cal). Assume that you convert the energy gained from the food with 5% efficiency and that the trench is 7 meters wide and 1 meter deep. Use the fact that the density of soil is 1000 kg/m³ and the acceleration due to gravity is 9.81 m/s². Round your answer to two decimal places. The length of the trench is the tolerance is +/- 2% Click if you would like to Show Work for this question: Open Show Work LINK TO TEXT meters.arrow_forwardLearning Goal: Radioactive decay - Half-life N 1,000,000 500,000 250,000 125,000 62,500 Number of nuclides, N x 10³ 1000 750 500 250 125 0 Time 0 the 2012 3h2 4112 5h2 612 7h2 8h2 9412 10₁2 31,250 15,625 he 2h 3h 4h 5h 6h 7he 8he 9h 10h Time in multiples of f 7,813 3,906 1,953 977 A radioactive sample's half-life is 30.2 years. 1 year = 365 days, 1 day = 24 hours, 1 hour = 60 min, 1 min = 60 sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON