Calculus: Special Edition: Chapters 1-5 (w/ WebAssign)
6th Edition
ISBN: 9781524908102
Author: SMITH KARL J, STRAUSS MONTY J, TODA MAGDALENA DANIELE
Publisher: Kendall Hunt Publishing
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.4, Problem 54PS
To determine
To calculate: the magnitude of the cross-product.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5.
Find an equation plane to the surface (u, v) = (3 cos(u) sin(v), 2 sin(u) sin(v), cos(u)) at the
point (u, v) = (0,7).
7. Consider the surface S defined by the equation
x3 +y2 – 3x - 2y – 4z = -2. Find all points
P = (x, y, z) so that the vector v = (-18,4,8) is normal
to the tangent plane to S at P.
%3D
az.
Suppose F = (2xz + 3y²) a, + (4yz²) a;.
(a) Calculate S[F·dS, where S is the shaded surface in Figure 1.
(c) Based on your results for parts (a) and (b), what named theorem do you think is
being satisfied here, if any?
(b) Calculate SF· dl, where C is the A → B → C → D → A closed path in Figure 1.
az
C
C (0,1,1)
D
(0,0,0)
(A
ay
В
ax
Figure 1: Figure for Problem 1.
Chapter 12 Solutions
Calculus: Special Edition: Chapters 1-5 (w/ WebAssign)
Ch. 12.1 - Prob. 1PSCh. 12.1 - Prob. 2PSCh. 12.1 - Prob. 3PSCh. 12.1 - Prob. 4PSCh. 12.1 - Prob. 5PSCh. 12.1 - Prob. 6PSCh. 12.1 - Prob. 7PSCh. 12.1 - Prob. 8PSCh. 12.1 - Prob. 9PSCh. 12.1 - Prob. 10PS
Ch. 12.1 - Prob. 11PSCh. 12.1 - Prob. 12PSCh. 12.1 - Prob. 13PSCh. 12.1 - Prob. 14PSCh. 12.1 - Prob. 15PSCh. 12.1 - Prob. 16PSCh. 12.1 - Prob. 17PSCh. 12.1 - Prob. 18PSCh. 12.1 - Prob. 19PSCh. 12.1 - Prob. 20PSCh. 12.1 - Prob. 21PSCh. 12.1 - Prob. 22PSCh. 12.1 - Prob. 23PSCh. 12.1 - Prob. 24PSCh. 12.1 - Prob. 25PSCh. 12.1 - Prob. 26PSCh. 12.1 - Prob. 27PSCh. 12.1 - Prob. 28PSCh. 12.1 - Prob. 29PSCh. 12.1 - Prob. 30PSCh. 12.1 - Prob. 31PSCh. 12.1 - Prob. 32PSCh. 12.1 - Prob. 33PSCh. 12.1 - Prob. 34PSCh. 12.1 - Prob. 35PSCh. 12.1 - Prob. 36PSCh. 12.1 - Prob. 37PSCh. 12.1 - Prob. 38PSCh. 12.1 - Prob. 39PSCh. 12.1 - Prob. 40PSCh. 12.1 - Prob. 41PSCh. 12.1 - Prob. 42PSCh. 12.1 - Prob. 43PSCh. 12.1 - Prob. 44PSCh. 12.1 - Prob. 45PSCh. 12.1 - Prob. 46PSCh. 12.1 - Prob. 47PSCh. 12.1 - Prob. 48PSCh. 12.1 - Prob. 49PSCh. 12.1 - Prob. 50PSCh. 12.1 - Prob. 51PSCh. 12.1 - Prob. 52PSCh. 12.1 - Prob. 53PSCh. 12.1 - Prob. 54PSCh. 12.1 - Prob. 55PSCh. 12.1 - Prob. 56PSCh. 12.1 - Prob. 57PSCh. 12.1 - Prob. 58PSCh. 12.1 - Prob. 59PSCh. 12.1 - Prob. 60PSCh. 12.2 - Prob. 1PSCh. 12.2 - Prob. 2PSCh. 12.2 - Prob. 3PSCh. 12.2 - Prob. 4PSCh. 12.2 - Prob. 5PSCh. 12.2 - Prob. 6PSCh. 12.2 - Prob. 7PSCh. 12.2 - Prob. 8PSCh. 12.2 - Prob. 9PSCh. 12.2 - Prob. 10PSCh. 12.2 - Prob. 11PSCh. 12.2 - Prob. 12PSCh. 12.2 - Prob. 13PSCh. 12.2 - Prob. 14PSCh. 12.2 - Prob. 15PSCh. 12.2 - Prob. 16PSCh. 12.2 - Prob. 17PSCh. 12.2 - Prob. 18PSCh. 12.2 - Prob. 19PSCh. 12.2 - Prob. 20PSCh. 12.2 - Prob. 21PSCh. 12.2 - Prob. 22PSCh. 12.2 - Prob. 23PSCh. 12.2 - Prob. 24PSCh. 12.2 - Prob. 25PSCh. 12.2 - Prob. 26PSCh. 12.2 - Prob. 27PSCh. 12.2 - Prob. 28PSCh. 12.2 - Prob. 29PSCh. 12.2 - Prob. 30PSCh. 12.2 - Prob. 31PSCh. 12.2 - Prob. 32PSCh. 12.2 - Prob. 33PSCh. 12.2 - Prob. 34PSCh. 12.2 - Prob. 35PSCh. 12.2 - Prob. 36PSCh. 12.2 - Prob. 37PSCh. 12.2 - Prob. 38PSCh. 12.2 - Prob. 39PSCh. 12.2 - Prob. 40PSCh. 12.2 - Prob. 41PSCh. 12.2 - Prob. 42PSCh. 12.2 - Prob. 43PSCh. 12.2 - Prob. 44PSCh. 12.2 - Prob. 45PSCh. 12.2 - Prob. 46PSCh. 12.2 - Prob. 47PSCh. 12.2 - Prob. 48PSCh. 12.2 - Prob. 49PSCh. 12.2 - Prob. 50PSCh. 12.2 - Prob. 51PSCh. 12.2 - Prob. 52PSCh. 12.2 - Prob. 53PSCh. 12.2 - Prob. 54PSCh. 12.2 - Prob. 55PSCh. 12.2 - Prob. 56PSCh. 12.2 - Prob. 57PSCh. 12.2 - Prob. 58PSCh. 12.2 - Prob. 59PSCh. 12.2 - Prob. 60PSCh. 12.3 - Prob. 1PSCh. 12.3 - Prob. 2PSCh. 12.3 - Prob. 3PSCh. 12.3 - Prob. 4PSCh. 12.3 - Prob. 5PSCh. 12.3 - Prob. 6PSCh. 12.3 - Prob. 7PSCh. 12.3 - Prob. 8PSCh. 12.3 - Prob. 9PSCh. 12.3 - Prob. 10PSCh. 12.3 - Prob. 11PSCh. 12.3 - Prob. 12PSCh. 12.3 - Prob. 13PSCh. 12.3 - Prob. 14PSCh. 12.3 - Prob. 15PSCh. 12.3 - Prob. 16PSCh. 12.3 - Prob. 17PSCh. 12.3 - Prob. 18PSCh. 12.3 - Prob. 19PSCh. 12.3 - Prob. 20PSCh. 12.3 - Prob. 21PSCh. 12.3 - Prob. 22PSCh. 12.3 - Prob. 23PSCh. 12.3 - Prob. 24PSCh. 12.3 - Prob. 25PSCh. 12.3 - Prob. 26PSCh. 12.3 - Prob. 27PSCh. 12.3 - Prob. 28PSCh. 12.3 - Prob. 29PSCh. 12.3 - Prob. 30PSCh. 12.3 - Prob. 31PSCh. 12.3 - Prob. 32PSCh. 12.3 - Prob. 33PSCh. 12.3 - Prob. 34PSCh. 12.3 - Prob. 35PSCh. 12.3 - Prob. 36PSCh. 12.3 - Prob. 37PSCh. 12.3 - Prob. 38PSCh. 12.3 - Prob. 39PSCh. 12.3 - Prob. 40PSCh. 12.3 - Prob. 41PSCh. 12.3 - Prob. 42PSCh. 12.3 - Prob. 43PSCh. 12.3 - Prob. 44PSCh. 12.3 - Prob. 45PSCh. 12.3 - Prob. 46PSCh. 12.3 - Prob. 47PSCh. 12.3 - Prob. 48PSCh. 12.3 - Prob. 49PSCh. 12.3 - Prob. 50PSCh. 12.3 - Prob. 51PSCh. 12.3 - Prob. 52PSCh. 12.3 - Prob. 53PSCh. 12.3 - Prob. 54PSCh. 12.3 - Prob. 55PSCh. 12.3 - Prob. 56PSCh. 12.3 - Prob. 57PSCh. 12.3 - Prob. 58PSCh. 12.3 - Prob. 59PSCh. 12.3 - Prob. 60PSCh. 12.4 - Prob. 1PSCh. 12.4 - Prob. 2PSCh. 12.4 - Prob. 3PSCh. 12.4 - Prob. 4PSCh. 12.4 - Prob. 5PSCh. 12.4 - Prob. 6PSCh. 12.4 - Prob. 7PSCh. 12.4 - Prob. 8PSCh. 12.4 - Prob. 9PSCh. 12.4 - Prob. 10PSCh. 12.4 - Prob. 11PSCh. 12.4 - Prob. 12PSCh. 12.4 - Prob. 13PSCh. 12.4 - Prob. 14PSCh. 12.4 - Prob. 15PSCh. 12.4 - Prob. 16PSCh. 12.4 - Prob. 17PSCh. 12.4 - Prob. 18PSCh. 12.4 - Prob. 19PSCh. 12.4 - Prob. 20PSCh. 12.4 - Prob. 21PSCh. 12.4 - Prob. 22PSCh. 12.4 - Prob. 23PSCh. 12.4 - Prob. 24PSCh. 12.4 - Prob. 25PSCh. 12.4 - Prob. 26PSCh. 12.4 - Prob. 27PSCh. 12.4 - Prob. 28PSCh. 12.4 - Prob. 29PSCh. 12.4 - Prob. 30PSCh. 12.4 - Prob. 31PSCh. 12.4 - Prob. 32PSCh. 12.4 - Prob. 33PSCh. 12.4 - Prob. 34PSCh. 12.4 - Prob. 35PSCh. 12.4 - Prob. 36PSCh. 12.4 - Prob. 37PSCh. 12.4 - Prob. 38PSCh. 12.4 - Prob. 39PSCh. 12.4 - Prob. 40PSCh. 12.4 - Prob. 41PSCh. 12.4 - Prob. 42PSCh. 12.4 - Prob. 43PSCh. 12.4 - Prob. 44PSCh. 12.4 - Prob. 45PSCh. 12.4 - Prob. 46PSCh. 12.4 - Prob. 47PSCh. 12.4 - Prob. 48PSCh. 12.4 - Prob. 49PSCh. 12.4 - Prob. 50PSCh. 12.4 - Prob. 51PSCh. 12.4 - Prob. 52PSCh. 12.4 - Prob. 53PSCh. 12.4 - Prob. 54PSCh. 12.4 - Prob. 55PSCh. 12.4 - Prob. 56PSCh. 12.4 - Prob. 57PSCh. 12.4 - Prob. 58PSCh. 12.4 - Prob. 59PSCh. 12.4 - Prob. 60PSCh. 12.5 - Prob. 1PSCh. 12.5 - Prob. 2PSCh. 12.5 - Prob. 3PSCh. 12.5 - Prob. 4PSCh. 12.5 - Prob. 5PSCh. 12.5 - Prob. 6PSCh. 12.5 - Prob. 7PSCh. 12.5 - Prob. 8PSCh. 12.5 - Prob. 9PSCh. 12.5 - Prob. 10PSCh. 12.5 - Prob. 11PSCh. 12.5 - Prob. 12PSCh. 12.5 - Prob. 13PSCh. 12.5 - Prob. 14PSCh. 12.5 - Prob. 15PSCh. 12.5 - Prob. 16PSCh. 12.5 - Prob. 17PSCh. 12.5 - Prob. 18PSCh. 12.5 - Prob. 19PSCh. 12.5 - Prob. 20PSCh. 12.5 - Prob. 21PSCh. 12.5 - Prob. 22PSCh. 12.5 - Prob. 23PSCh. 12.5 - Prob. 24PSCh. 12.5 - Prob. 25PSCh. 12.5 - Prob. 26PSCh. 12.5 - Prob. 27PSCh. 12.5 - Prob. 28PSCh. 12.5 - Prob. 29PSCh. 12.5 - Prob. 30PSCh. 12.5 - Prob. 31PSCh. 12.5 - Prob. 32PSCh. 12.5 - Prob. 33PSCh. 12.5 - Prob. 34PSCh. 12.5 - Prob. 35PSCh. 12.5 - Prob. 36PSCh. 12.5 - Prob. 37PSCh. 12.5 - Prob. 38PSCh. 12.5 - Prob. 39PSCh. 12.5 - Prob. 40PSCh. 12.5 - Prob. 41PSCh. 12.5 - Prob. 42PSCh. 12.5 - Prob. 43PSCh. 12.5 - Prob. 44PSCh. 12.5 - Prob. 45PSCh. 12.5 - Prob. 46PSCh. 12.5 - Prob. 47PSCh. 12.5 - Prob. 48PSCh. 12.5 - Prob. 49PSCh. 12.5 - Prob. 50PSCh. 12.5 - Prob. 51PSCh. 12.5 - Prob. 52PSCh. 12.5 - Prob. 53PSCh. 12.5 - Prob. 54PSCh. 12.5 - Prob. 55PSCh. 12.5 - Prob. 56PSCh. 12.5 - Prob. 57PSCh. 12.5 - Prob. 58PSCh. 12.5 - Prob. 59PSCh. 12.5 - Prob. 60PSCh. 12.6 - Prob. 1PSCh. 12.6 - Prob. 2PSCh. 12.6 - Prob. 3PSCh. 12.6 - Prob. 4PSCh. 12.6 - Prob. 5PSCh. 12.6 - Prob. 6PSCh. 12.6 - Prob. 7PSCh. 12.6 - Prob. 8PSCh. 12.6 - Prob. 9PSCh. 12.6 - Prob. 10PSCh. 12.6 - Prob. 11PSCh. 12.6 - Prob. 12PSCh. 12.6 - Prob. 13PSCh. 12.6 - Prob. 14PSCh. 12.6 - Prob. 15PSCh. 12.6 - Prob. 16PSCh. 12.6 - Prob. 17PSCh. 12.6 - Prob. 18PSCh. 12.6 - Prob. 19PSCh. 12.6 - Prob. 20PSCh. 12.6 - Prob. 21PSCh. 12.6 - Prob. 22PSCh. 12.6 - Prob. 23PSCh. 12.6 - Prob. 24PSCh. 12.6 - Prob. 25PSCh. 12.6 - Prob. 26PSCh. 12.6 - Prob. 27PSCh. 12.6 - Prob. 28PSCh. 12.6 - Prob. 29PSCh. 12.6 - Prob. 30PSCh. 12.6 - Prob. 31PSCh. 12.6 - Prob. 32PSCh. 12.6 - Prob. 33PSCh. 12.6 - Prob. 34PSCh. 12.6 - Prob. 35PSCh. 12.6 - Prob. 36PSCh. 12.6 - Prob. 37PSCh. 12.6 - Prob. 38PSCh. 12.6 - Prob. 39PSCh. 12.6 - Prob. 40PSCh. 12.6 - Prob. 41PSCh. 12.6 - Prob. 42PSCh. 12.6 - Prob. 43PSCh. 12.6 - Prob. 44PSCh. 12.6 - Prob. 45PSCh. 12.6 - Prob. 46PSCh. 12.6 - Prob. 47PSCh. 12.6 - Prob. 48PSCh. 12.6 - Prob. 49PSCh. 12.6 - Prob. 50PSCh. 12.6 - Prob. 51PSCh. 12.6 - Prob. 52PSCh. 12.6 - Prob. 53PSCh. 12.6 - Prob. 54PSCh. 12.6 - Prob. 55PSCh. 12.6 - Prob. 56PSCh. 12.6 - Prob. 57PSCh. 12.6 - Prob. 58PSCh. 12.6 - Prob. 59PSCh. 12.6 - Prob. 60PSCh. 12.7 - Prob. 1PSCh. 12.7 - Prob. 2PSCh. 12.7 - Prob. 3PSCh. 12.7 - Prob. 4PSCh. 12.7 - Prob. 5PSCh. 12.7 - Prob. 6PSCh. 12.7 - Prob. 7PSCh. 12.7 - Prob. 8PSCh. 12.7 - Prob. 9PSCh. 12.7 - Prob. 10PSCh. 12.7 - Prob. 11PSCh. 12.7 - Prob. 12PSCh. 12.7 - Prob. 13PSCh. 12.7 - Prob. 14PSCh. 12.7 - Prob. 15PSCh. 12.7 - Prob. 16PSCh. 12.7 - Prob. 17PSCh. 12.7 - Prob. 18PSCh. 12.7 - Prob. 19PSCh. 12.7 - Prob. 20PSCh. 12.7 - Prob. 21PSCh. 12.7 - Prob. 22PSCh. 12.7 - Prob. 23PSCh. 12.7 - Prob. 24PSCh. 12.7 - Prob. 25PSCh. 12.7 - Prob. 26PSCh. 12.7 - Prob. 27PSCh. 12.7 - Prob. 28PSCh. 12.7 - Prob. 29PSCh. 12.7 - Prob. 30PSCh. 12.7 - Prob. 31PSCh. 12.7 - Prob. 32PSCh. 12.7 - Prob. 33PSCh. 12.7 - Prob. 34PSCh. 12.7 - Prob. 35PSCh. 12.7 - Prob. 36PSCh. 12.7 - Prob. 37PSCh. 12.7 - Prob. 38PSCh. 12.7 - Prob. 39PSCh. 12.7 - Prob. 40PSCh. 12.7 - Prob. 41PSCh. 12.7 - Prob. 42PSCh. 12.7 - Prob. 43PSCh. 12.7 - Prob. 44PSCh. 12.7 - Prob. 45PSCh. 12.7 - Prob. 46PSCh. 12.7 - Prob. 47PSCh. 12.7 - Prob. 48PSCh. 12.7 - Prob. 49PSCh. 12.7 - Prob. 50PSCh. 12.7 - Prob. 51PSCh. 12.7 - Prob. 52PSCh. 12.7 - Prob. 53PSCh. 12.7 - Prob. 54PSCh. 12.7 - Prob. 55PSCh. 12.7 - Prob. 56PSCh. 12.7 - Prob. 57PSCh. 12.7 - Prob. 58PSCh. 12.7 - Prob. 59PSCh. 12.7 - Prob. 60PSCh. 12.8 - Prob. 1PSCh. 12.8 - Prob. 2PSCh. 12.8 - Prob. 3PSCh. 12.8 - Prob. 4PSCh. 12.8 - Prob. 5PSCh. 12.8 - Prob. 6PSCh. 12.8 - Prob. 7PSCh. 12.8 - Prob. 8PSCh. 12.8 - Prob. 9PSCh. 12.8 - Prob. 10PSCh. 12.8 - Prob. 11PSCh. 12.8 - Prob. 12PSCh. 12.8 - Prob. 13PSCh. 12.8 - Prob. 14PSCh. 12.8 - Prob. 15PSCh. 12.8 - Prob. 16PSCh. 12.8 - Prob. 17PSCh. 12.8 - Prob. 18PSCh. 12.8 - Prob. 19PSCh. 12.8 - Prob. 20PSCh. 12.8 - Prob. 21PSCh. 12.8 - Prob. 22PSCh. 12.8 - Prob. 23PSCh. 12.8 - Prob. 24PSCh. 12.8 - Prob. 25PSCh. 12.8 - Prob. 26PSCh. 12.8 - Prob. 27PSCh. 12.8 - Prob. 28PSCh. 12.8 - Prob. 29PSCh. 12.8 - Prob. 30PSCh. 12.8 - Prob. 31PSCh. 12.8 - Prob. 32PSCh. 12.8 - Prob. 33PSCh. 12.8 - Prob. 34PSCh. 12.8 - Prob. 35PSCh. 12.8 - Prob. 36PSCh. 12.8 - Prob. 37PSCh. 12.8 - Prob. 38PSCh. 12.8 - Prob. 39PSCh. 12.8 - Prob. 40PSCh. 12.8 - Prob. 41PSCh. 12.8 - Prob. 42PSCh. 12.8 - Prob. 43PSCh. 12.8 - Prob. 44PSCh. 12.8 - Prob. 45PSCh. 12.8 - Prob. 46PSCh. 12.8 - Prob. 47PSCh. 12.8 - Prob. 48PSCh. 12.8 - Prob. 49PSCh. 12.8 - Prob. 50PSCh. 12.8 - Prob. 51PSCh. 12.8 - Prob. 52PSCh. 12.8 - Prob. 53PSCh. 12.8 - Prob. 54PSCh. 12.8 - Prob. 55PSCh. 12.8 - Prob. 56PSCh. 12.8 - Prob. 57PSCh. 12.8 - Prob. 58PSCh. 12.8 - Prob. 59PSCh. 12.8 - Prob. 60PSCh. 12 - Prob. 1PECh. 12 - Prob. 2PECh. 12 - Prob. 3PECh. 12 - Prob. 4PECh. 12 - Prob. 5PECh. 12 - Prob. 6PECh. 12 - Prob. 7PECh. 12 - Prob. 8PECh. 12 - Prob. 9PECh. 12 - Prob. 10PECh. 12 - Prob. 11PECh. 12 - Prob. 12PECh. 12 - Prob. 13PECh. 12 - Prob. 14PECh. 12 - Prob. 15PECh. 12 - Prob. 16PECh. 12 - Prob. 17PECh. 12 - Prob. 18PECh. 12 - Prob. 19PECh. 12 - Prob. 20PECh. 12 - Prob. 21PECh. 12 - Prob. 22PECh. 12 - Prob. 23PECh. 12 - Prob. 24PECh. 12 - Prob. 25PECh. 12 - Prob. 26PECh. 12 - Prob. 27PECh. 12 - Prob. 28PECh. 12 - Prob. 29PECh. 12 - Prob. 30PECh. 12 - Prob. 1SPCh. 12 - Prob. 2SPCh. 12 - Prob. 3SPCh. 12 - Prob. 4SPCh. 12 - Prob. 5SPCh. 12 - Prob. 6SPCh. 12 - Prob. 7SPCh. 12 - Prob. 8SPCh. 12 - Prob. 9SPCh. 12 - Prob. 10SPCh. 12 - Prob. 11SPCh. 12 - Prob. 12SPCh. 12 - Prob. 13SPCh. 12 - Prob. 14SPCh. 12 - Prob. 15SPCh. 12 - Prob. 16SPCh. 12 - Prob. 17SPCh. 12 - Prob. 18SPCh. 12 - Prob. 19SPCh. 12 - Prob. 20SPCh. 12 - Prob. 21SPCh. 12 - Prob. 22SPCh. 12 - Prob. 23SPCh. 12 - Prob. 24SPCh. 12 - Prob. 25SPCh. 12 - Prob. 26SPCh. 12 - Prob. 27SPCh. 12 - Prob. 28SPCh. 12 - Prob. 29SPCh. 12 - Prob. 30SPCh. 12 - Prob. 31SPCh. 12 - Prob. 32SPCh. 12 - Prob. 33SPCh. 12 - Prob. 34SPCh. 12 - Prob. 35SPCh. 12 - Prob. 36SPCh. 12 - Prob. 37SPCh. 12 - Prob. 38SPCh. 12 - Prob. 39SPCh. 12 - Prob. 40SPCh. 12 - Prob. 41SPCh. 12 - Prob. 42SPCh. 12 - Prob. 43SPCh. 12 - Prob. 44SPCh. 12 - Prob. 45SPCh. 12 - Prob. 46SPCh. 12 - Prob. 47SPCh. 12 - Prob. 48SPCh. 12 - Prob. 49SPCh. 12 - Prob. 50SPCh. 12 - Prob. 51SPCh. 12 - Prob. 52SPCh. 12 - Prob. 53SPCh. 12 - Prob. 54SPCh. 12 - Prob. 55SPCh. 12 - Prob. 56SPCh. 12 - Prob. 57SPCh. 12 - Prob. 58SPCh. 12 - Prob. 59SPCh. 12 - Prob. 60SPCh. 12 - Prob. 61SPCh. 12 - Prob. 62SPCh. 12 - Prob. 63SPCh. 12 - Prob. 64SPCh. 12 - Prob. 65SPCh. 12 - Prob. 66SPCh. 12 - Prob. 67SPCh. 12 - Prob. 68SPCh. 12 - Prob. 69SPCh. 12 - Prob. 70SPCh. 12 - Prob. 71SPCh. 12 - Prob. 72SPCh. 12 - Prob. 73SPCh. 12 - Prob. 74SPCh. 12 - Prob. 75SPCh. 12 - Prob. 76SPCh. 12 - Prob. 77SPCh. 12 - Prob. 78SPCh. 12 - Prob. 79SPCh. 12 - Prob. 80SPCh. 12 - Prob. 81SPCh. 12 - Prob. 82SPCh. 12 - Prob. 83SPCh. 12 - Prob. 84SPCh. 12 - Prob. 85SPCh. 12 - Prob. 86SPCh. 12 - Prob. 87SPCh. 12 - Prob. 88SPCh. 12 - Prob. 89SPCh. 12 - Prob. 91SPCh. 12 - Prob. 92SPCh. 12 - Prob. 93SPCh. 12 - Prob. 94SPCh. 12 - Prob. 95SPCh. 12 - Prob. 96SPCh. 12 - Prob. 97SPCh. 12 - Prob. 98SPCh. 12 - Prob. 99SP
Knowledge Booster
Similar questions
- Please Solve in detailarrow_forward3. A donut with major radius R and minor radius r can be represented parametrically by r(u, v) = ((R+r cos u) cos v, (R+r cos u) sin v, r sin u) for 0 ≤ u ≤ 27 and 0 ≤ v ≤ 2π. What is the surface area of the donut?arrow_forward7. Consider the parametric surface S given by r(u, v) = 3u cos vi+ 3u sin vj + u? k, for 0 < u < 2, 0arrow_forwardUse hyperbolic functions to parametrize the intersection of the surfaces x² - y² = 25 and z = 5xy. (Use symbolic notation and fractions where needed. Use hyperbolic cosine for parametrization x variable.) x(t) = 5 cos (ht) Incorrect y(t) = Incorrect z(t) = Incorrect 5 sin (ht) (125 sin(h (2t))) 2arrow_forward6. Consider the parametric curve x(t) = 1 + cost + cos 2t, y(t) = = sint + sin 2t = sin t(1 + 2 cos t) with - < t < π. Give the equations, with y as a function of x, for the tangent lines to the curve at the origin of the Cartesian coordinates.arrow_forwardFind an equation of the tangent plane to the parametric surface at u = v = π/2arrow_forwardMatch each parametrization with the corresponding surface. (i) (ii) (iii) (iv) (v) Answer Bank (u, cos (v) , sin (v)) (u, u (2 + cos (v), u (2 + sin (v))) (u, u + v, v) (cos (u) sin (v), 3 cos (u) sin (v), cos (v)) , COS (u, v³, v)arrow_forwardMatch each parametrization with the corresponding surface. (i) (u, cos (u), sin (v)) Z (iv) (u, v³, v) (ii) Answer Bank (u, u + v, v) (cos (u) sin (v), 3 cos (u) sin (u), cos (v)) (v) (iii) (u, u (2+ cos (v)), u (2+ sin (u)))arrow_forward5) Consider the surfaces S1 : ryz = 10 and S2 : z = r? + y² and the point Po = (1,2, 5). a. Find an equation of the tangent plane to Si at Po. b. Find parametric equations of the tangent line to the curve of intersection of S, and S, at Po.arrow_forwardarrow_back_iosarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage