ORGANIC CHEM W/BIOLOGICAL TOP. ACCESS
6th Edition
ISBN: 9781264382545
Author: SMITH
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.3, Problem 5P
Interpretation Introduction
Interpretation: The reason as to why heats of hydrogenation cannot be used to determine the relative stability of
Concept introduction: Hydrogenation reaction is exothermic in nature due to the fact that the bonds are stronger in product than in reactant. Heat of hydrogenation can be used as measure for relative stability of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
f. Predict how the van Deemter curve in Figure 7
would change if the temperature were raised
from 40 °C to 55 °C.
Figure 7. van Desmter curves in reduced coordinates for four
nitroalkane homologues (nitropropane, black; nitrobutane, red;
nitropentane, blue; and nitrohexane, green) separated on the FMS
phase. Chromatographic conditions: column dimensions 50 mm × 4.6
mm id, eluent 30/70 ACN/water, flow rates 0.2-5.0 mL/min, injection
volume 0.5 and column temperature 40 °C. No corrections to the
plate heights have been made to account for extracolumn dispersion.
Reduced Plate Height (h)
°
20
40
60
Reduced Velocity (v)
8. (2) A water sample is analyzed for traces of benzene using headspace analysis. The sample and
standard are spiked with a fixed amount of toluene as an internal standard. The following data are
obtained:
Ppb benzene
Peak area benzene
Peak area toluene
10.0
252
376
Sample
533
368
What is the concentration of benzene in the sample?
Liquid chromatography has been used to track the concentration of remdesivir
(a broad-spectrum antiviral drug, structure shown at right) in COVID patients
undergoing experimental treatments.
Intensity
The authors provide the following details regarding standard solutions
preparation:
HN
CN
HO
OH
NH2
Remdesivir (RDV) stock solution (5000 µg/mL) was prepared by
dissolving RDV drug powder using the mixture of DMSO: MeOH (30:70
v/v). The RDV working standard solutions for calibration and quality
controls were prepared using methanol in concentrations of 100, 10, 1,
0.1, 0.01 µg/mL. 1, 2.5, 5, 7.5, 10, 25, 50, 75, 100, 250, 500, 1000, and 5000 ng/mL sample solutions
were prepared freshly by spiking calibration standard solutions into the blank human plasma samples
for method calibration.
a) What type of calibration method is being described? Why do you think the authors chose this
method as opposed to another?
b) Based on the details provided in part a, describe an appropriate method blank…
Recent advancements in liquid chromatography include the development of ultrahigh pressure liquid
chromatography (UHPLC) and an increased use of capillary columns that had previously only been used
with gas chromatography. Both of these advances have made the development of portable LC systems
possible. For example, Axcend Corp. makes a portable system that uses a capillary column with an
internal diameter of 150-μm-that is packed with 1.7-um stationary phase particles. In contrast, a traditional
LC column has a 4.6 mm internal diameter and utilizes 5-um stationary phase particles.
a) Explain one advantage that is afforded by the use of a capillary column in liquid chromatographic
separation. Explain one disadvantage of capillary columns.
b) Explain how the use of smaller stationary phase particles can improve the resolution of a separation.
Include any relevant equations that support your explanation.
c) A scientist at Rowan University is using
the Axcend LC to conduct analyses of F…
Chapter 12 Solutions
ORGANIC CHEM W/BIOLOGICAL TOP. ACCESS
Ch. 12.1 - Prob. 1PCh. 12.3 - Problem 12.2 What alkane is formed when each...Ch. 12.3 - Prob. 3PCh. 12.3 - Prob. 4PCh. 12.3 - Prob. 5PCh. 12.3 - Prob. 6PCh. 12.3 - Compound Molecular formula before...Ch. 12.4 - Problem 12.8 Draw the products formed when...Ch. 12.5 - Prob. 9PCh. 12.5 - Prob. 10P
Ch. 12.5 - Problem 12.11 (a) Draw the structure of a compound...Ch. 12.5 - Prob. 12PCh. 12.5 - Prob. 13PCh. 12.6 - Problem 12.14 Draw the products of each...Ch. 12.8 - Prob. 15PCh. 12.8 - Problem 12.16 Draw all stereoisomers formed when...Ch. 12.9 - Prob. 17PCh. 12.9 - Problem 12.18 Draw the products formed when both...Ch. 12.10 - Problem 12.19 Draw the products formed when each...Ch. 12.10 - Prob. 20PCh. 12.10 - Prob. 21PCh. 12.11 - Problem 12.22 Draw the products formed when each...Ch. 12.11 - Prob. 23PCh. 12.12 - Problem 12.24 Draw the organic products in each of...Ch. 12.13 - Prob. 25PCh. 12 - 12.29 Draw the products formed when A is treated...Ch. 12 - Prob. 30PCh. 12 - Prob. 31PCh. 12 - Prob. 32PCh. 12 - Prob. 33PCh. 12 - Draw the organic products formed when cyclopentene...Ch. 12 - Draw the organic products formed when allylic...Ch. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - What alkene is needed to synthesize each 1,2-diol...Ch. 12 - 12.48 Draw the products formed in each oxidative...Ch. 12 - What alkene or alkyne yields each set of products...Ch. 12 - Prob. 47PCh. 12 - Prob. 48PCh. 12 - Prob. 49PCh. 12 - Prob. 50PCh. 12 - 12.57 Draw the product of each asymmetric...Ch. 12 - 12.60 Identify A in the following reaction...Ch. 12 - Prob. 58PCh. 12 - 12.62 It is sometimes necessary to isomerize a cis...Ch. 12 - 12.63 Devise a synthesis of each compound from...Ch. 12 - Prob. 61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- This paper describes the use of fullerene molecules, also known as buckyballs, as a stationary phase for liquid chromatography. The performance of the fullerene-modified stationary phase (FMS) is compared to that of a more common C18 stationary phase and to two other carbon-based stationary phases, PGC and COZ. A. 10A OM B. - Figure 1. Idealized drawing of the cross-section of a pore inside a silica particle, showing the relative densities of aminopropylsilyl (red/green) and fullerene (blue) groups: (A) full cross- section; (B) detailed view of covalent bonding of fullerene to the silica surface. Surface densities of silyl and fullerene groups were inferred from elemental composition results obtained at each stage of the synthesis (see Table 1). Absorbance (mAU, 220 nm) 700 600 500 400 300 200 100 a. Define selectivity, a, with words and an equation. b. Explain how the choice of stationary phase affects selectivity. c. Calculate the resolution of the nitrobenzene and toluene peaks in…arrow_forwardNormalized Intensity (a. u.) 0.5 1.0 A 3D-printed GC column (shown below) was created for use with "micro" gas chromatography applications. To prove its utility, it was used to separate a mixture of alkanes (C9-C18, C22, C24). For the separation shown below, the column temperature was ramped from 40 °C to 250 °C at a rate of 30 °C per minute. (a) 9 10 = 1 mm 12 13 15 22 0.0 0 100 200 300 400 Time (sec) a) What detector would you use for this analysis? Justify your selection. b) Explain how the chromatogram would change if the separation was run isothermally. c) Explain how the chromatogram would change if the temperature ramp were increased to 50 °C per minute.arrow_forwardDevise a synthesis of each compound from the indicated starting material. You may also use any organic compounds with one or two carbons and any needed inorganic reagents. a. Brarrow_forward
- Please help me with #2b & #3 using the data.arrow_forwardHeparin is used as an anti-coagulant. A risk of heparin use is thrombocytopenia, or low platelet count. This risk is minimized with the use of low molecular weight heparins (LMWH), therefore it is desirable to separate LMWH from higher molecular weight heparins. The method of choice to do this is molecular exclusion chromatography. Below is a chromatogram from a molecular exclusion chromatographic run. Peaks ranging from A to J are clearly distinguishable. The heparin mixture that was analyzed had anywhere from 6 to 30 repeat units of monomer (where the heparin with 30 repeat units would be roughly five times the size of the heparin with six repeat units). a. Which letter most likely represents the peak with 6 repeat units given these heparin polymers were separated with molecular exclusion chromatography? b. Explain your reasoning describing the mechanism of retention in molecular exclusion chromatography. 100 80 60 60 Relative Abundance 40 40 E GH 20 20 B A 36 38 40 42 44 46 48 50 50…arrow_forwardHELP NOW PLEASE ! URGENT!arrow_forward
- HELP NOW PLEASE ! ASAP! URGENT!arrow_forwardDraw a Newman projection for the molecule below from the perspective indicated. Which of the groups (letters A-H) are methyl groups? CH3 H H H A H B ☑ >> H. ABCDEFG I H -H CH3 G D CH F E Numeric 4 points How many gauche interactions exist in the conformation shown in the previous problem? 1arrow_forwardHELP NOW PLEASE ! ASAP! URGENT!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningMacroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks Cole

Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning

Macroscale and Microscale Organic Experiments
Chemistry
ISBN:9781305577190
Author:Kenneth L. Williamson, Katherine M. Masters
Publisher:Brooks Cole