University Calculus: Early Transcendentals, Loose-leaf Edition (4th Edition)
4th Edition
ISBN: 9780135164860
Author: Joel R. Hass, Christopher Heil, Przemyslaw Bogacki, Maurice D. Weir, George B. Thomas Jr.
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Chapter 12.3, Problem 5E
To determine
Find the unit tangent
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A: Tan Latitude / Tan P
A = Tan 04° 30'/ Tan 77° 50.3'
A= 0.016960 803 S CA named opposite to latitude,
except when hour angle between 090° and 270°)
B: Tan Declination | Sin P
B Tan 052° 42.1'/ Sin 77° 50.3'
B = 1.34 2905601 SCB is alway named same as
declination)
C = A + B = 1.35 9866404 S CC correction, A+/- B:
if A and B have same name - add, If
different name- subtract)
=
Tan Azimuth 1/Ccx cos Latitude)
Tan Azimuth = 0.737640253
Azimuth
=
S 36.4° E CAzimuth takes combined
name of C correction and Hour Angle - If LHA
is between 0° and 180°, it is named "west", if
LHA is between 180° and 360° it is named "east"
True Azimuth= 143.6°
Compass Azimuth = 145.0°
Compass Error = 1.4° West
Variation 4.0 East
Deviation: 5.4 West
ds
5. Find a solution to this initial value problem:
3t2, s(0) = 5.
dt
6. Find a solution to this initial value problem:
A' = 0.03A, A(0) = 100.
2) Drive the frequency responses of the following rotor system with Non-Symmetric Stator. The
system contains both external and internal damping. Show that the system loses the reciprocity
property.
Chapter 12 Solutions
University Calculus: Early Transcendentals, Loose-leaf Edition (4th Edition)
Ch. 12.1 - In Exercises 1–4, find the given limits.
1.
Ch. 12.1 - In Exercises 1–4, find the given limits.
2.
Ch. 12.1 - In Exercises 1–4, find the given limits.
3.
Ch. 12.1 - In Exercises 1–4, find the given limits.
4.
Ch. 12.1 - Motion in the Plane In Exercises 58, r(t) is the...Ch. 12.1 - Motion in the Plane
In Exercises 5–8, r(t) is the...Ch. 12.1 - In Exercises 58, r(t) is the position of a...Ch. 12.1 - In Exercises 5–8, r(t) is the position of a...Ch. 12.1 - Prob. 9ECh. 12.1 - Prob. 10E
Ch. 12.1 - Exercises 9–12 give the position vectors of...Ch. 12.1 - Prob. 12ECh. 12.1 - In Exercises 13–18, r(t) is the position of a...Ch. 12.1 - Prob. 14ECh. 12.1 - In Exercises 13–18, r(t) is the position of a...Ch. 12.1 - Prob. 16ECh. 12.1 - Prob. 17ECh. 12.1 - In Exercises 13–18, r(t) is the position of a...Ch. 12.1 - In Exercises 1922, r(t) is the position of a...Ch. 12.1 - In Exercises 19–22, r(t) is the position of a...Ch. 12.1 - In Exercises 19–22, r(t) is the position of a...Ch. 12.1 - Prob. 22ECh. 12.1 - As mentioned in the text, the tangent line to a...Ch. 12.1 - Prob. 24ECh. 12.1 - Tangents to Curves
As mentioned in the text, the...Ch. 12.1 - Prob. 26ECh. 12.1 - Prob. 27ECh. 12.1 - Prob. 28ECh. 12.1 - Prob. 29ECh. 12.1 - Prob. 30ECh. 12.1 - Prob. 31ECh. 12.1 - Prob. 32ECh. 12.1 - Prob. 33ECh. 12.1 - Prob. 34ECh. 12.1 - Prob. 35ECh. 12.1 - Prob. 36ECh. 12.1 - Motion along a circle Each of the following...Ch. 12.1 - Motion along a circle Show that the vector-valued...Ch. 12.1 - Prob. 39ECh. 12.1 - Motion along a cycloid A particle moves in the...Ch. 12.1 - Prob. 41ECh. 12.1 - Prob. 42ECh. 12.1 - Prob. 43ECh. 12.1 - Prob. 44ECh. 12.1 - Component test for continuity at a point Show that...Ch. 12.1 - Limits of cross products of vector functions...Ch. 12.1 - Differentiable vector functions are continuous...Ch. 12.1 - Constant Function Rule Prove that if u is the...Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
1.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
2.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
3.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
4.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
5.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
6.
Ch. 12.2 - Evaluate the integrals in Exercises 110. 7....Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
8.
Ch. 12.2 - Prob. 9ECh. 12.2 - Prob. 10ECh. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Prob. 15ECh. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Prob. 18ECh. 12.2 - Prob. 19ECh. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - At time t = 0, a particle is located at the point...Ch. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Range and height versus speed
Show that doubling a...Ch. 12.2 - Flight time and height A projectile is fired with...Ch. 12.2 - Prob. 26ECh. 12.2 - Prob. 27ECh. 12.2 - Beaming electrons An electron in a TV tube is...Ch. 12.2 - Prob. 29ECh. 12.2 - Finding muzzle speed Find the muzzle speed of a...Ch. 12.2 - Prob. 31ECh. 12.2 - Colliding marbles The accompanying figure shows an...Ch. 12.2 - Firing from (x0, y0) Derive the equations
(see...Ch. 12.2 - Where trajectories crest For a projectile fired...Ch. 12.2 - Prob. 35ECh. 12.2 - Prob. 36ECh. 12.2 - Prob. 37ECh. 12.2 - Products of scalar and vector functions Suppose...Ch. 12.2 - Prob. 39ECh. 12.2 - The Fundamental Theorem of Calculus The...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - Prob. 7ECh. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - Find the point on the curve
at a distance 26...Ch. 12.3 - Find the point on the curve
at a distance 13...Ch. 12.3 - In Exercises 11–14, find the arc length parameter...Ch. 12.3 - In Exercises 11–14, find the arc length parameter...Ch. 12.3 - In Exercises 11–14, find the arc length parameter...Ch. 12.3 - In Exercises 11–14, find the arc length parameter...Ch. 12.3 - Arc length Find the length of the curve
from (0,...Ch. 12.3 - Length of helix The length of the turn of the...Ch. 12.3 - Prob. 17ECh. 12.3 - Length is independent of parametrization To...Ch. 12.3 - The involute of a circle If a siring wound around...Ch. 12.3 - Prob. 20ECh. 12.3 - Distance along a line Show that if u is a unit...Ch. 12.3 - Prob. 22ECh. 12.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 12.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 12.4 - Find T, N, and for the plane curves in Exercises...Ch. 12.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 12.4 - Prob. 5ECh. 12.4 - Prob. 6ECh. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Prob. 16ECh. 12.4 - Show that the parabola , has its largest curvature...Ch. 12.4 - Show that the ellipse x = a cos t, y = b sin t, a...Ch. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.4 - Prob. 25ECh. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.4 - Prob. 29ECh. 12.4 - Prob. 30ECh. 12.5 - In Exercises 1 and 2, write a in the form a = aTT...Ch. 12.5 - In Exercises 1 and 2, write a in the form a = aTT...Ch. 12.5 - In Exercises 36, write a in the form a = aTT + aNN...Ch. 12.5 - Prob. 4ECh. 12.5 - In Exercises 3–6, write a in the form a = aTT +...Ch. 12.5 - In Exercises 3–6, write a in the form a = aTT +...Ch. 12.5 - In Exercises 7 and 8, find r, T, N, and B at the...Ch. 12.5 - Prob. 8ECh. 12.5 - The speedometer on your car reads a steady 35 mph....Ch. 12.5 - Prob. 10ECh. 12.5 - Can anything be said about the speed of a particle...Ch. 12.5 - An object of mass m travels along the parabola y =...Ch. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.6 - Prob. 1ECh. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - Prob. 5ECh. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - Prob. 9ECh. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - Prob. 12ECh. 12.6 - Prob. 13ECh. 12.6 - Prob. 14ECh. 12.6 - Prob. 15ECh. 12.6 - Prob. 16ECh. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12 - Prob. 1GYRCh. 12 - Prob. 2GYRCh. 12 - Prob. 3GYRCh. 12 - Prob. 4GYRCh. 12 - Prob. 5GYRCh. 12 - Prob. 6GYRCh. 12 - Prob. 7GYRCh. 12 - Prob. 8GYRCh. 12 - Prob. 9GYRCh. 12 - Prob. 10GYRCh. 12 - Prob. 11GYRCh. 12 - Prob. 12GYRCh. 12 - Prob. 13GYRCh. 12 - In Exercises 1 and 2, graph the curves and sketch...Ch. 12 - Prob. 2PECh. 12 - Prob. 3PECh. 12 - Prob. 4PECh. 12 - Prob. 5PECh. 12 - Prob. 6PECh. 12 - Prob. 7PECh. 12 - Prob. 8PECh. 12 - Prob. 9PECh. 12 - Prob. 10PECh. 12 - Prob. 11PECh. 12 - Prob. 12PECh. 12 - Prob. 13PECh. 12 - Prob. 14PECh. 12 - Prob. 15PECh. 12 - Prob. 16PECh. 12 - Prob. 17PECh. 12 - Prob. 18PECh. 12 - Prob. 19PECh. 12 - In Exercises 17-20, find T, N, B, and k at the...Ch. 12 - Prob. 21PECh. 12 - Prob. 22PECh. 12 - Prob. 23PECh. 12 - Prob. 24PECh. 12 - Prob. 25PECh. 12 - Find equations for the osculating, normal, and...Ch. 12 - Find parametric equations for the line that is...Ch. 12 - Prob. 28PECh. 12 - Prob. 29PECh. 12 - Prob. 30PECh. 12 - Prob. 1AAECh. 12 - Suppose the curve in Exercise 1 is replaced by the...Ch. 12 - Prob. 3AAECh. 12 - Prob. 4AAECh. 12 - Prob. 5AAECh. 12 - Prob. 6AAECh. 12 - Prob. 7AAECh. 12 - Prob. 8AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 1) Show that the force response of a MDOF system with general damping can be written as: X liax) -Σ = ral iw-s, + {0} iw-s,arrow_forward3) Prove that in extracting real mode ø, from a complex measured mode o, by maximizing the function: maz | ቀÇቃ | ||.|| ||.||2 is equivalent to the solution obtained from the followings: max Real(e)||2arrow_forwardDraw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. L1 (a) The line L₁ is tangent to the unit circle at the point 0.992 (b) The tangent line 4₁ has equation: y= 0.126 x +0.992 (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line L₂ has equation: y= 0.380 x + x × x)arrow_forward
- The cup on the 9th hole of a golf course is located dead center in the middle of a circular green which is 40 feet in radius. Your ball is located as in the picture below. The ball follows a straight line path and exits the green at the right-most edge. Assume the ball travels 8 ft/sec. Introduce coordinates so that the cup is the origin of an xy-coordinate system and start by writing down the equations of the circle and the linear path of the ball. Provide numerical answers below with two decimal places of accuracy. 50 feet green ball 40 feet 9 cup ball path rough (a) The x-coordinate of the position where the ball enters the green will be (b) The ball will exit the green exactly seconds after it is hit. (c) Suppose that L is a line tangent to the boundary of the golf green and parallel to the path of the ball. Let Q be the point where the line is tangent to the circle. Notice that there are two possible positions for Q. Find the possible x-coordinates of Q: smallest x-coordinate =…arrow_forwardDraw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. P L1 L (a) The line L₁ is tangent to the unit circle at the point (b) The tangent line L₁ has equation: X + (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line 42 has equation: y= x + ).arrow_forwardWhat is a solution to a differential equation? We said that a differential equation is an equation that describes the derivative, or derivatives, of a function that is unknown to us. By a solution to a differential equation, we mean simply a function that satisfies this description. 2. Here is a differential equation which describes an unknown position function s(t): ds dt 318 4t+1, ds (a) To check that s(t) = 2t2 + t is a solution to this differential equation, calculate you really do get 4t +1. and check that dt' (b) Is s(t) = 2t2 +++ 4 also a solution to this differential equation? (c) Is s(t)=2t2 + 3t also a solution to this differential equation? ds 1 dt (d) To find all possible solutions, start with the differential equation = 4t + 1, then move dt to the right side of the equation by multiplying, and then integrate both sides. What do you get? (e) Does this differential equation have a unique solution, or an infinite family of solutions?arrow_forward
- Ministry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Automobile Department Subject :Engineering Analysis Time: 2 hour Date:27-11-2022 کورس اول تحليلات تعمیر ) 1st month exam / 1st semester (2022-2023)/11/27 Note: Answer all questions,all questions have same degree. Q1/: Find the following for three only. 1- 4s C-1 (+2-3)2 (219) 3.0 (6+1)) (+3+5) (82+28-3),2- ,3- 2-1 4- Q2/:Determine the Laplace transform of the function t sint. Q3/: Find the Laplace transform of 1, 0≤t<2, -2t+1, 2≤t<3, f(t) = 3t, t-1, 3≤t 5, t≥ 5 Q4: Find the Fourier series corresponding to the function 0 -5arrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Subject :Engineering Analysis Time: 80 min Date:11-12-2022 Automobile Department 2nd month exam / 1" semester (2022-2023) Note: Answer all questions,all questions have same degree. کورس اول شعر 3 Q1/: Use a Power series to solve the differential equation: y" - xy = 0 Q2/:Evaluate using Cauchy's residue theorem, sinnz²+cosz² dz, where C is z = 3 (z-1)(z-2) Q3/:Evaluate dz (z²+4)2 Where C is the circle /z-i/-2,using Cauchy's residue theorem. Examiner: Dr. Wisam N. Hassanarrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Subject :Engineering Analysis Time: 80 min Date:11-12-2022 Automobile Department 2nd month exam / 1" semester (2022-2023) Note: Answer all questions,all questions have same degree. کورس اول شعر 3 Q1/: Use a Power series to solve the differential equation: y" - xy = 0 Q2/:Evaluate using Cauchy's residue theorem, sinnz²+cosz² dz, where C is z = 3 (z-1)(z-2) Q3/:Evaluate dz (z²+4)2 Where C is the circle /z-i/-2,using Cauchy's residue theorem. Examiner: Dr. Wisam N. Hassanarrow_forwardWhich degenerate conic is formed when a double cone is sliced through the apex by a plane parallel to the slant edge of the cone?arrow_forward1/ Solve the following: 1 x + X + cos(3X) -75 -1 2 2 (5+1) e 5² + 5 + 1 3 L -1 1 5² (5²+1) 1 5(5-5)arrow_forwardI need expert handwritten solution.to this integralarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY