Each member of the group should cut out a large acute scalene triangle. Make each one different. For each triangle fold the triangle to form the perpendicular bisectors of the sides. The fold for the perpendicular bisectors of
a. Do the three perpendicular bisectors meet at a common point for each triangle?
b. For each triangle, label the vertices as A, B, and C and the common intersection point P. Measure
c. What changes in this experiment would you have to make for different kinds of triangles?
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
A Problem Solving Approach to Mathematics for Elementary School Teachers (12th Edition)
- I've been struggling with this because of how close the numbers are together!! I would really appreciate if someone could help me❤️arrow_forwardWhy charts,graphs,table??? difference between regression and correlation analysis.arrow_forwardMatrix MЄ R4×4, as specified below, is an orthogonal matrix - thus, it fulfills MTM = I. M (ELES),- m2,1. We know also that all the six unknowns mr,c are non-negative with the exception of Your first task is to find the values of all the six unknowns. Think first, which of the mr,c you should find first. Next, consider a vector v = (-6, 0, 0, 8) T. What's the length of v, i.e., |v|? Using M as transformation matrix, map v onto w by w = Mv provide w with its numeric values. What's the length of w, especially when comparing it to the length of v? Finally, consider another vector p = ( 0, 0, 8, 6) T. What's the angle between v (from above) and p? Using M as transformation matrix, map p onto q by q = Mp - provide q with its numeric values. What's the angle between w and q, especially when comparing it to the angle between v and p?arrow_forward
- (c) Find the harmonic function on the annular region Q = {1 < r < 2} satisfying the boundary conditions given by U (1, 0) = 1, U(2, 0) 1+15 sin (20). =arrow_forwardQuestion 3 (a) Find the principal part of the PDE AU + UÃ + U₁ + x + y = 0 and determine whether it's hyperbolic, elliptic or parabolic. (b) Prove that if U(r, 0) solves the Laplace equation in R², then so is V(r, 0) = U (², −0). (c) Find the harmonic function on the annular region = {1 < r < 2} satisfying the boundary conditions given by U(1, 0) = 1, U(2, 0) = 1 + 15 sin(20). [5] [7] [8]arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer Plz .arrow_forward
- 7. (a) (i) Express y=-x²-7x-15 in the form y = −(x+p)²+q. (ii) Hence, sketch the graph of y=-x²-7x-15. (b) (i) Express y = x² - 3x + 4 in the form y = (x − p)²+q. (ii) Hence, sketch the graph of y = x² - 3x + 4. 28 CHAPTER 1arrow_forward- (c) Suppose V is a solution to the PDE V₁ – V× = 0 and W is a solution to the PDE W₁+2Wx = 0. (i) Prove that both V and W are solutions to the following 2nd order PDE Utt Utx2Uxx = 0. (ii) Find the general solutions to the 2nd order PDE (1) from part c(i). (1)arrow_forwardSolve the following inhomogeneous wave equation with initial data. Utt-Uxx = 2, x = R U(x, 0) = 0 Ut(x, 0): = COS Xarrow_forward
- Could you please solve this question on a note book. please dont use AI because this is the third time i upload it and they send an AI answer. If you cant solve handwritten dont use the question send it back. Thank you.arrow_forward(a) Write down the general solutions for the wave equation Utt - Uxx = 0. (b) Solve the following Goursat problem Utt-Uxx = 0, x = R Ux-t=0 = 4x2 Ux+t=0 = 0 (c) Describe the domain of influence and domain of dependence for wave equations. (d) Solve the following inhomogeneous wave equation with initial data. Utt - Uxx = 2, x ЄR U(x, 0) = 0 Ut(x, 0) = COS Xarrow_forwardQuestion 3 (a) Find the principal part of the PDE AU + Ux +U₁ + x + y = 0 and determine whether it's hyperbolic, elliptic or parabolic. (b) Prove that if U (r, 0) solves the Laplace equation in R2, then so is V (r, 0) = U (², −0). (c) Find the harmonic function on the annular region 2 = {1 < r < 2} satisfying the boundary conditions given by U(1, 0) = 1, U(2, 0) = 1 + 15 sin(20).arrow_forward
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
- Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning