Precalculus Enhanced with Graphing Utilities (7th Edition)
7th Edition
ISBN: 9780134119281
Author: Michael Sullivan, Michael Sullivan III
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.3, Problem 109DW
To determine
To verify: To create a geometric series, one that has a sum and one that does not and ask a friend to solve it.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a is done please show b
A homeware company has been approached to manufacture a cake tin in the shape
of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the
games launch. The base of the cake tin has a characteristic dimension / and is
illustrated in Figure 1 below, you should assume the top and bottom of the shape
can be represented by semi-circles. The vertical sides of the cake tin have a height of
h. As the company's resident mathematician, you need to find the values of r and h
that minimise the internal surface area of the cake tin given that the volume of the
tin is Vfixed-
2r
Figure 1 - Plan view of the "ghost" cake tin base.
(a) Show that the Volume (V) of the cake tin as a function of r and his
2(+1)²h
V = 2
15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.
Chapter 12 Solutions
Precalculus Enhanced with Graphing Utilities (7th Edition)
Ch. 12.1 - For the function f( x )= x1 x , find f( 2 ) and f(...Ch. 12.1 - True or False A function is a relation between two...Ch. 12.1 - If 1000 is invested at 4 per annum compounded...Ch. 12.1 - How much do you need to invest now at 5 per annum...Ch. 12.1 - Prob. 5AYPCh. 12.1 - True or False The notation a 5 represents the...Ch. 12.1 - If n0 is an integer, then n!= ________ When n2 .Ch. 12.1 - The sequence a 1 =5 , a n =3 a n1 is an example of...Ch. 12.1 - The notation a 1 + a 2 + a 3 ++ a n = k=1 n a k...Ch. 12.1 - k=1 n k=1+2+3++n = ______. (a) n! (b) n( n+1 ) 2...
Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 51-60, write out each sum. k=1 n (...Ch. 12.1 - In Problems 51-60, write out each sum. k=1 n (...Ch. 12.1 - In Problems 51-60, write out each sum. k=1 n k 2...Ch. 12.1 - In Problems 51-60, write out each sum. k=1 n (...Ch. 12.1 - In Problems 51-60, write out each sum. k=0 n 1 3...Ch. 12.1 - In Problems 51-60, write out each sum. k=0 n ( 3...Ch. 12.1 - In Problems 51-60, write out each sum. k=0 n1 1 3...Ch. 12.1 - In Problems 51-60, write out each sum. k=0 n1 (...Ch. 12.1 - In Problems 51-60, write out each sum. k=2 n ( 1...Ch. 12.1 - In Problems 51-60, write out each sum. k=3 n ( 1...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - If 2500 is invested at 3 compounded monthly, find...Ch. 12.1 - Write the complex number 1i in polar form. Express...Ch. 12.1 - For v=2ij and w=i+2j , find the dot product vw .Ch. 12.1 - Find an equation of the parabola with vertex ( 3,4...Ch. 12.2 - In a(n) _________ sequence, the difference between...Ch. 12.2 - True or False For an arithmetic sequence { a n }...Ch. 12.2 - If the 5th term of an arithmetic sequence is 12...Ch. 12.2 - True or False The sum S n of the first n terms of...Ch. 12.2 - An arithmetic sequence can always be expressed as...Ch. 12.2 - If a n =2n+7 is the n th term of an arithmetic...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 39-56, find each sum. 1+3+5++( 2n1 )Ch. 12.2 - In Problems 39-56, find each sum. 2+4+6++2nCh. 12.2 - In Problems 39-56, find each sum. 7+12+17++( 2+5n...Ch. 12.2 - In Problems 39-56, find each sum. 1+3+7++( 4n5 )Ch. 12.2 - In Problems 39-56, find each sum. 2+4+6++70Ch. 12.2 - In Problems 39-56, find each sum. 1+3+5++59Ch. 12.2 - In Problems 39-56, find each sum. 5+9+13++49Ch. 12.2 - In Problems 39-56, find each sum. 2+5+8++41Ch. 12.2 - In Problems 39-56, find each sum. 73+78+83+88++558Ch. 12.2 - In Problems 39-56, find each sum. 7+1511299Ch. 12.2 - In Problems 39-56, find each sum. 4+4.5+5+5.5++100Ch. 12.2 - In Problems 39-56, find each sum. 8+8 1 4 +8 1 2...Ch. 12.2 - In Problems 39-56, find each sum. n=1 80 ( 2n5 )Ch. 12.2 - In Problems 39-56, find each sum. n=1 90 ( 32n )Ch. 12.2 - In Problems 39-56, find each sum. n=1 100 ( 6 1 2...Ch. 12.2 - In Problems 39-56, find each sum. n=1 80 ( 1 3 n+...Ch. 12.2 - In Problems 39-56, find each sum. The sum of the...Ch. 12.2 - In Problems 39-56, find each sum. The sum of the...Ch. 12.2 - Find x so that x+3,2x+1,and5x+2 are consecutive...Ch. 12.2 - Find x so that 2x,3x+2,and5x+3 are consecutive...Ch. 12.2 - How many terms must be added in an arithmetic...Ch. 12.2 - How many terms must be added in an arithmetic...Ch. 12.2 - Drury Lane Theater The Drury Lane Theater has 25...Ch. 12.2 - Football Stadium The corner section of a football...Ch. 12.2 - Creating a Mosaic A mosaic is designed in the...Ch. 12.2 - Constructing a Brick Staircase A brick staircase...Ch. 12.2 - Cooling Air As a parcel of air rises (for example,...Ch. 12.2 - Prob. 66AECh. 12.2 - Seats in an Amphitheater An outdoor amphitheater...Ch. 12.2 - Stadium Construction How many rows are in the...Ch. 12.2 - Salary If you take a job with a starting salary of...Ch. 12.2 - Make up an arithmetic sequence. Give it to a...Ch. 12.2 - Describe the similarities and differences between...Ch. 12.2 - Problems 72-75 are based on material learned...Ch. 12.2 - Prob. 73RYKCh. 12.2 - Prob. 74RYKCh. 12.2 - Problems 72-75 are based on material learned...Ch. 12.3 - The formula for the n th term of a geometric...Ch. 12.3 - Prob. 2CVCh. 12.3 - Prob. 3CVCh. 12.3 - Prob. 4CVCh. 12.3 - Prob. 5CVCh. 12.3 - Prob. 6CVCh. 12.3 - Prob. 7CVCh. 12.3 - Prob. 8CVCh. 12.3 - Prob. 9SBCh. 12.3 - Prob. 10SBCh. 12.3 - Prob. 11SBCh. 12.3 - Prob. 12SBCh. 12.3 - Prob. 13SBCh. 12.3 - Prob. 14SBCh. 12.3 - Prob. 15SBCh. 12.3 - Prob. 16SBCh. 12.3 - Prob. 17SBCh. 12.3 - Prob. 18SBCh. 12.3 - Prob. 19SBCh. 12.3 - In Problems 19-26, find the fifth term and the n...Ch. 12.3 - Prob. 21SBCh. 12.3 - Prob. 22SBCh. 12.3 - Prob. 23SBCh. 12.3 - Prob. 24SBCh. 12.3 - Prob. 25SBCh. 12.3 - Prob. 26SBCh. 12.3 - Prob. 27SBCh. 12.3 - Prob. 28SBCh. 12.3 - Prob. 29SBCh. 12.3 - Prob. 30SBCh. 12.3 - Prob. 31SBCh. 12.3 - Prob. 32SBCh. 12.3 - Prob. 33SBCh. 12.3 - Prob. 34SBCh. 12.3 - Prob. 35SBCh. 12.3 - Prob. 36SBCh. 12.3 - Prob. 37SBCh. 12.3 - Prob. 38SBCh. 12.3 - Prob. 39SBCh. 12.3 - Prob. 40SBCh. 12.3 - In problems 41-46, find each sum. 1 4 + 2 4 + 2 2...Ch. 12.3 - Prob. 42SBCh. 12.3 - In problems 41-46, find each sum. k=1 n ( 2 3 ) kCh. 12.3 - In problems 41-46, find each sum. k=1 n 4 3 k1Ch. 12.3 - Prob. 45SBCh. 12.3 - Prob. 46SBCh. 12.3 - Prob. 47SBCh. 12.3 - Prob. 48SBCh. 12.3 - Prob. 49SBCh. 12.3 - Prob. 50SBCh. 12.3 - Prob. 51SBCh. 12.3 - For Problems 47-52, use a graphing utility to find...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - Prob. 56SBCh. 12.3 - Prob. 57SBCh. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - Prob. 60SBCh. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - Prob. 63SBCh. 12.3 - Prob. 64SBCh. 12.3 - Prob. 65SBCh. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - Prob. 69MPCh. 12.3 - Prob. 70MPCh. 12.3 - Prob. 71MPCh. 12.3 - Prob. 72MPCh. 12.3 - In Problems 69-82, determine whether the given...Ch. 12.3 - Prob. 74MPCh. 12.3 - Prob. 75MPCh. 12.3 - Prob. 76MPCh. 12.3 - Prob. 77MPCh. 12.3 - Prob. 78MPCh. 12.3 - Prob. 79MPCh. 12.3 - Prob. 80MPCh. 12.3 - Prob. 81MPCh. 12.3 - Prob. 82MPCh. 12.3 - Prob. 83AECh. 12.3 - Prob. 84AECh. 12.3 - Salary Increases If you have been hired at an...Ch. 12.3 - Prob. 86AECh. 12.3 - Pendulum Swings Initially, a pendulum swings...Ch. 12.3 - Bouncing Balls A ball is dropped from a height of...Ch. 12.3 - Retirement Christine contributes 100 each month to...Ch. 12.3 - Saving for a Home Jolene wants to purchase a new...Ch. 12.3 - Tax-Sheltered Annuity Don contributes 500 at the...Ch. 12.3 - Retirement Ray contributes 1000 to an individual...Ch. 12.3 - Sinking Fund Scott and Alice want to purchase a...Ch. 12.3 - Prob. 94AECh. 12.3 - Prob. 95AECh. 12.3 - Prob. 96AECh. 12.3 - Prob. 97AECh. 12.3 - Multiplier Refer to Problem 97. Suppose that the...Ch. 12.3 - Prob. 99AECh. 12.3 - Stock Price Refer to Problem 99. Suppose that a...Ch. 12.3 - Prob. 101AECh. 12.3 - Show that the Amount of an Annuity formula that...Ch. 12.3 - Critical Thinking You are interviewing for a job...Ch. 12.3 - Prob. 104DWCh. 12.3 - Prob. 105DWCh. 12.3 - Prob. 106DWCh. 12.3 - Prob. 107DWCh. 12.3 - Prob. 108DWCh. 12.3 - Prob. 109DWCh. 12.3 - Describe the similarities and differences between...Ch. 12.3 - Use the ChangeofBase Formula and a calculator to...Ch. 12.3 - Prob. 113RYKCh. 12.3 - Prob. 114RYKCh. 12.3 - Prob. 115RYKCh. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 23-27, prove each statement. If x1 ,...Ch. 12.4 - In Problems 23-27, prove each statement. If 0x1 ,...Ch. 12.4 - In Problems 23-27, prove each statement. ab is a...Ch. 12.4 - In Problems 23-27, prove each statement. a+b is a...Ch. 12.4 - In Problems 23-27, prove each statement. ( 1+a ) n...Ch. 12.4 - Show that the statement n 2 n+41 is a prime...Ch. 12.4 - Show that the formula 2+4+6++2n= n 2 +n+2 obeys...Ch. 12.4 - Use mathematical induction to prove that if r1 ,...Ch. 12.4 - Use mathematical induction to prove that a+( a+d...Ch. 12.4 - Extended Principle of Mathematical Induction The...Ch. 12.4 - Geometry Use the Extended Principle of...Ch. 12.4 - How would you explain the Principle of...Ch. 12.4 - Solve: log 2 x+5 =4Ch. 12.4 - A mass of 500 kg is suspended from two cables, as...Ch. 12.4 - Solve the system: { 4x+3y=7 2x5y=16Ch. 12.4 - For A=[ 1 2 1 0 1 4 ]andB=[ 3 1 1 0 2 2 ] , find...Ch. 12.5 - The ______ ______ is a triangular display of the...Ch. 12.5 - ( n 0 )=and( n 1 )= .Ch. 12.5 - True or False ( n j )= j! ( nj )!n!Ch. 12.5 - The ______ ________ can be used to expand...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 5 3...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 7 3...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 7 5...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 9 7...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 50...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 100...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 1000...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 1000...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 55...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 60...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 47...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 37...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - Use the Binomial Theorem to find the numerical...Ch. 12.5 - Use the Binomial Theorem to find the numerical...Ch. 12.5 - Show that ( n n1 )=nand( n n )=1 .Ch. 12.5 - Show that if n and j arc integers with 0jn , then,...Ch. 12.5 - If n is a positive integer, show that, ( n 0 )+( n...Ch. 12.5 - If n is a positive integer, show that ( n 0 )( n 1...Ch. 12.5 - ( 5 0 ) ( 1 4 ) 5 +( 5 1 ) ( 1 4 ) 4 ( 3 4 )+( 5 2...Ch. 12.5 - Stirling’s Formula An approximation for n! ,...Ch. 12.5 - Solve 6 x = 5 x+1 . Express the answer both in...Ch. 12.5 - For v=2i+3jandw=3i2j (a) Find the dot product vw...Ch. 12.5 - Solve the system of equations: { xyz=0 2x+y+3z=1...Ch. 12.5 - Graph the system of inequalities. Tell whether the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Use a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…arrow_forwardx²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.arrow_forwardSketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8arrow_forwardDetermine the following limit. lim 35w² +8w+4 w→∞ √49w+w³ 3 Select the correct choice below, and, if necessary, fill in the answer box to complete your choice. ○ A. lim W→∞ 35w² +8w+4 49w+w3 (Simplify your answer.) B. The limit does not exist and is neither ∞ nor - ∞.arrow_forwardCalculate the limit lim X-a x-a 5 using the following factorization formula where n is a positive integer and x-➡a a is a real number. x-a = (x-a) (x1+x-2a+x lim x-a X - a x-a 5 = n- + xa an-2 + an−1)arrow_forwardThe function s(t) represents the position of an object at time t moving along a line. Suppose s(1) = 116 and s(5)=228. Find the average velocity of the object over the interval of time [1,5]. The average velocity over the interval [1,5] is Vav = (Simplify your answer.)arrow_forwardFor the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1. Time Interval Average Velocity [1,2] Complete the following table. Time Interval Average Velocity [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] [1,2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] ப (Type exact answers. Type integers or decimals.) The value of the instantaneous velocity at t = 1 is (Round to the nearest integer as needed.)arrow_forwardFind the following limit or state that it does not exist. Assume b is a fixed real number. (x-b) 40 - 3x + 3b lim x-b x-b ... Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (x-b) 40 -3x+3b A. lim x-b x-b B. The limit does not exist. (Type an exact answer.)arrow_forwardx4 -289 Consider the function f(x) = 2 X-17 Complete parts a and b below. a. Analyze lim f(x) and lim f(x), and then identify the horizontal asymptotes. x+x X--∞ lim 4 X-289 2 X∞ X-17 X - 289 lim = 2 ... X∞ X - 17 Identify the horizontal asymptotes. Select the correct choice and, if necessary, fill in the answer box(es) to complete your choice. A. The function has a horizontal asymptote at y = B. The function has two horizontal asymptotes. The top asymptote is y = and the bottom asymptote is y = ☐ . C. The function has no horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote x = a, evaluate lim f(x) and lim f(x). Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. earrow_forwardExplain why lim x²-2x-35 X-7 X-7 lim (x+5), and then evaluate lim X-7 x² -2x-35 x-7 x-7 Choose the correct answer below. A. x²-2x-35 The limits lim X-7 X-7 and lim (x+5) equal the same number when evaluated using X-7 direct substitution. B. Since each limit approaches 7, it follows that the limits are equal. C. The numerator of the expression X-2x-35 X-7 simplifies to x + 5 for all x, so the limits are equal. D. Since x²-2x-35 X-7 = x + 5 whenever x 7, it follows that the two expressions evaluate to the same number as x approaches 7. Now evaluate the limit. x²-2x-35 lim X-7 X-7 = (Simplify your answer.)arrow_forwardA function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and x-6+ lim f(x)=-3, find the following limits. X-6 a. lim f(x) b. +9-←x lim f(x) X-6 a. lim f(x)= +9-←x (Simplify your answer.) b. lim f(x)= X→-6 (Simplify your answer.) ...arrow_forwardEvaluate the following limit. lim X-X (10+19) Select the correct answer below and, if necessary, fill in the answer box within your choice. 10 A. lim 10+ = 2 ☐ (Type an integer or a simplified fraction.) X-∞ B. The limit does not exist.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellSequences and Series Introduction; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=m5Yn4BdpOV0;License: Standard YouTube License, CC-BYIntroduction to sequences; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=VG9ft4_dK24;License: Standard YouTube License, CC-BY