Differential Equations with Boundary-Value Problems (MindTap Course List)
9th Edition
ISBN: 9781305965799
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.2, Problem 6E
In Problems 1–6 a rod of length L coincides with the interval [0, L] on the x-axis. Set up the boundary-value problem for the temperature u(x, t).
The ends are insulated, and there is heat transfer from the lateral surface of the rod into the surrounding medium held at temperature 50°. The initial temperature is 100° throughout.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
2. Find the temperature distribution inside a solid parallelepiped with sides
(a, b, c) whose faces are kept at zero temperature subject to initial condi-
tion u(x, y, z, 0) = A sin() sin(7) sin().
The steady two-dimensional temperature (7) distribution in an isotropic heat conducting materials is
given by Laplace equation,
H = 6
The side lengths of the domain are L=8 and H=6.
Assuming consistent units are used, boundary conditions are shown in Figure 2. Use the grid indicated
in Figure 2 to solve for the temperature distribution.
L = 8
f'(x) =
T=100
f"(x)=
T=50
T=50
T=100
T=40
T₁
T3
²T ²T
ax² dy²
T=40
Hint: Because of symmetry, T₁-T3 and T2=T4.
Central finite difference formula
f(x+h)-f(x-h)
2h
f(x+h)-2f(x) + f(x-h)
h²
+ =0
T=15
T₂
T4
T=20
ar
Əx
Figure 2 Finite difference nodal scheme
=
X
The steady two-dimensional temperature (7) distribution in an isotropic heat conducting materials is
given by Laplace equation,
The side lengths of the domain are I=8 and H=6.
Assuming consistent units are used, boundary conditions are shown in Figure 2. Use the grid indicated
in Figure 2 to solve for the temperature distribution.
H=6
T=100
T=50
T=50
T=100
L=8
T=40
T₁
T3
T=40
&T O'T
Central finite difference formula
f'(x)=
f(x+h)-f(x-h)
2h
ƒ"(x) = f(x+h)−2ƒ (x) + f(x−h)
T=15
T₂
T₁
T=20
Figure 2 Finite difference nodal scheme
बे
-6
x
Chapter 12 Solutions
Differential Equations with Boundary-Value Problems (MindTap Course List)
Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...
Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 18ECh. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 20ECh. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 22ECh. 12.1 - Prob. 23ECh. 12.1 - Prob. 24ECh. 12.1 - Prob. 25ECh. 12.1 - Prob. 26ECh. 12.1 - In Problems 27 and 28 show that the given partial...Ch. 12.1 - In Problems 27 and 28 show that the given partial...Ch. 12.1 - Verify that each of the products u = XY in (3),...Ch. 12.1 - Prob. 30ECh. 12.1 - Prob. 31ECh. 12.1 - Prob. 32ECh. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - Prob. 10ECh. 12.2 - In Problems 11 and 12 set up the boundary-value...Ch. 12.2 - In Problems 11 and 12 set up the boundary-value...Ch. 12.3 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.3 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.3 - Find the temperature u(x, t) in a rod of length L...Ch. 12.3 - Solve Problem 3 if L = 2 and f(x)={x,0x10,1x2.Ch. 12.3 - Suppose heat is lost from the lateral surface of a...Ch. 12.3 - Solve Problem 5 if the ends x = 0 and x = L are...Ch. 12.3 - A thin wire coinciding with the x-axis on the...Ch. 12.3 - Find the temperature u(x, t) for the...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - Prob. 11ECh. 12.4 - A model for the motion of a vibrating string whose...Ch. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - The transverse displacement u(x, t) of a vibrating...Ch. 12.4 - Prob. 19ECh. 12.4 - The vertical displacement u(x, t) of an infinitely...Ch. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 1–10 solve Laplace’s equation (1) for...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 1–10 solve Laplace’s equation (1) for...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - Prob. 10ECh. 12.5 - In Problems 11 and 12 solve Laplaces equation (1)...Ch. 12.5 - In Problems 11 and 12 solve Laplaces equation (1)...Ch. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - In Problems 15 and 16 use the superposition...Ch. 12.5 - In Problems 15 and 16 use the superposition...Ch. 12.5 - Prob. 18ECh. 12.5 - Solve the Neumann problem for a rectangle:...Ch. 12.5 - Prob. 20ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 3ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 11ECh. 12.6 - Prob. 12ECh. 12.6 - Prob. 13ECh. 12.6 - In Problems 13-16 proceed as in Example 2 to solve...Ch. 12.6 - Prob. 15ECh. 12.6 - In Problems 13-16 proceed as in Example 2 to solve...Ch. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.7 - In Example 1 find the temperature u(x, t) when the...Ch. 12.7 - Prob. 2ECh. 12.7 - Find the steady-state temperature for a...Ch. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - Prob. 7ECh. 12.7 - Prob. 8ECh. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.8 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.8 - Prob. 2ECh. 12.8 - Prob. 3ECh. 12.8 - In Problems 3 and 4 solve the wave equation (2)...Ch. 12.8 - Prob. 5ECh. 12.8 - Prob. 6ECh. 12 - Use separation of variables to find product...Ch. 12 - Use separation of variables to find product...Ch. 12 - Find a steady-state solution (x) of the...Ch. 12 - Give a physical interpretation for the boundary...Ch. 12 - At t = 0 a string of unit length is stretched on...Ch. 12 - Prob. 6RECh. 12 - Find the steady-state temperature u(x, y) in the...Ch. 12 - Find the steady-state temperature u(x, y) in the...Ch. 12 - Prob. 9RECh. 12 - Find the temperature u(x, t) in the infinite plate...Ch. 12 - Prob. 11RECh. 12 - Solve the boundary-value problem 2ux2+sinx=ut, 0 ...Ch. 12 - Prob. 13RECh. 12 - The concentration c(x, t) of a substance that both...Ch. 12 - Prob. 15RECh. 12 - Solve Laplaces equation for a rectangular plate...Ch. 12 - Prob. 17RECh. 12 - Prob. 18RECh. 12 - Prob. 19RECh. 12 - If the four edges of the rectangular plate in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 4. An imaginary ant is walking on an imaginary cartesian plane so that at any point (x, y) it moves in the direction of maximum temperature increase. If the temperature at any point (x, y) is T(x, y) = -e2y cos x, find an equation of the form y = f(x) for the path of the ant if it was originally located at (T/4,0).arrow_forwardDraw the level curves of f(x,y)= x² + 9y² for k=0, k=1, k=9.arrow_forward1. Suppose that the volume V of a certain cone can be expressed as V =nh, where h is the height of the cone. a) By differentiating V = nh with respect to time t, derive an equation that relates h, dh/dt, and dV/dt as the cone shrinks. b) At a certain moment, the height of the cone is decreasing at 2 centimeters per second (cm/sec), and its height is 6 cm. At that same moment, what is the rate of change of the volume of the cone? Do not round your answer. Use the correct unit for your answer. At a certain moment, the height of the cone is 8 centimeters, and its volume is c) decreasing at 160 cm3/sec. At that same moment, what is the rate of change of the height of the cone? Do not round your answer. Use the correct unit for your answer.arrow_forward
- Suppose that a particle moves along a straight line with velocity cos(t/2) , sin(t/3), te [0, 7], t E (T, 37], v(t) = %3D in meters/second. What is the total distance traveled from t = 0 up to t = 3T seconds ? (You only need to input %3| Type your answer..arrow_forwardEx. 5. Find a solution of Laplace's equation, u +u„ =0, inside a rectangle subject to the following boundary conditions: а. и(0, у) 3 0, и(, у) 3 0, и(х,0) — -4sin (2rx). и(х,5) %3 6sin (3rx). b. и(0), у) - 0, и(, у) - 0, и(х,0) —х', и(x,2) -0. с. и, (0, у) 3 5sin (ту). и,(1, у)-13sin (2тy), и(х,0) — 0, и(х,2)-0. d. u, (0, у) — 0, и(1, у) — 0, и(х,0) —0, и, (х, 2) %35 сos 2 е. и, (0, у) - 0, и, (2л, у) - 0, и(х,-1)-0, и(х,) —1+sin (2xх).arrow_forward1. a) The diameter of a balloon, d, is decreasing at the rate of 0.3 cm/s while the height, h, is increasing at a rate of 0.15 cm/s. Find the rate at which the volume, V, is changing when d-4 cm and h=30 cm. az b. If z=x³+2xy² and x = rcose, y=rsine, find and simplest form. az in their двarrow_forward
- 2. Find whether the function F= (* - y' )i + (v² – 3x)j + (z² - xy is irrotational. %3Darrow_forwardConsider f(x,y)=39−x2−y2, and let z=f(x,y). What is the z=9 level curve?arrow_forwardShow that the function f (x, y) = x³ + y° - 63(x +y) +12xy %D is maximum at (-7,-7) and minimum at (3,3). A B E E I ... 1.arrow_forward
- 1. Solve for the othogonal trasctories y =x²(1-cx)arrow_forwardEx. 4. Find a solution of Laplace's equation, u„ +u„=0, inside the rectangle 0arrow_forward5. Suppose that y(t) = (cost, sin t) for tER. Show that y(t) and "(t) are parallel for all t € R.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY