
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.2, Problem 3P
Computer plot graphs of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Find the perimeter of the triangle. Express the perimeter using the same unit of measure that appears on the given sides.
9 ft
13 ft
6 ft
The perimeter is
Use the formula for Pr to evaluate the following expression.
9P5
9P5 =☐
Find the volume of the figure.
The volume of the figure is
3 m
3 m
3 m
Chapter 12 Solutions
Mathematical Methods in the Physical Sciences
Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...Ch. 12.1 - Solve the following differential equations by...
Ch. 12.2 - Using (2.6) and (2.7) and the requirement that...Ch. 12.2 - Show that Pl(1)=(1)l. Hint: When is Pl(x) an even...Ch. 12.2 - Computer plot graphs of Pl(x) for l=0,1,2,3,4, and...Ch. 12.2 - Use the method of reduction of order [Chapter 8,...Ch. 12.3 - By Leibniz' rule, write the formula for...Ch. 12.3 - Use Problem 1 to find the following derivatives....Ch. 12.3 - Use Problem 1 to find the following derivatives....Ch. 12.3 - Use Problem 1 to find the following derivatives....Ch. 12.3 - Use Problem 1 to find the following derivatives....Ch. 12.3 - Verify Problem 1. Hints: One method is to use...Ch. 12.4 - Verify equations (4.4) and (4.5). (4.4)...Ch. 12.4 - Show that Pl(1)=1, with P1(x) given by (4.1), in...Ch. 12.4 - Find P0(x),P1(x),P2(x),P3(x), and P4(x) from...Ch. 12.4 - Show that 11xmPl(x)dx=0 if ml. Hint: Use...Ch. 12.5 - Find P3(x) by getting one more term in the...Ch. 12.5 - Verify (5.5) using (5.1). (5.1)...Ch. 12.5 - Use the recursion relation (5.8a) and the values...Ch. 12.5 - Show from (5.1) that (xh)x=hh. Substitute the...Ch. 12.5 - Differentiate the recursion relation (5.8a) and...Ch. 12.5 - From (5.8b) and (5.8c), obtain (5.8d) and (5.8f)....Ch. 12.5 - Write (5.8c) with l replaced by l+1 and use it to...Ch. 12.5 - Express each of the following polynomials as...Ch. 12.5 - Express each of the following polynomials as...Ch. 12.5 - Express each of the following polynomials as...Ch. 12.5 - Express each of the following polynomials as...Ch. 12.5 - Express each of the following polynomials as...Ch. 12.5 - Express each of the following polynomials as...Ch. 12.5 - Show that any polynomial of degree n can be...Ch. 12.5 - Expand the potential V=K/d in (5.11) in the...Ch. 12.6 - Show that if abA*(x)B(x)dx=0 [see (6.3)], then...Ch. 12.6 - Show that the functions einx/l,n=0,1,2,, are a set...Ch. 12.6 - Show that the functions x2 and sinx are orthogonal...Ch. 12.6 - Show that the functions f(x) and g(x) are...Ch. 12.6 - Evaluate 11P0(x)P2(x)dx to show that these...Ch. 12.6 - Show in two ways that Pl(x) and Pl(x) are...Ch. 12.6 - Show that the set of functions sinnx is not a...Ch. 12.6 - Show that the functions cosn+12x,n=0,1,2,, are...Ch. 12.6 - Show in two ways that 11P2n+1(x)dx=0.Ch. 12.7 - By a method similar to that we used to show that...Ch. 12.7 - Following the method in (7.2) to (7.5), show that...Ch. 12.7 - Use Problem 4.4 to show that 11Pm(x)Pl(x)dx=0 if...Ch. 12.7 - Use equation (7.6) to show that 11Pl(x)Pl1(x)dx=0....Ch. 12.7 - Show that 11Pl(x)dx=0,l0. Hint: Consider...Ch. 12.7 - Show that P1(x) is orthogonal to Pl(x)2 on (1,1)....Ch. 12.8 - Find the norm of each of the following functions...Ch. 12.8 - Find the norm of each of the following functions...Ch. 12.8 - Find the norm of each of the following functions...Ch. 12.8 - Find the norm of each of the following functions...Ch. 12.8 - Find the norm of each of the following functions...Ch. 12.8 - Give another proof of (8.1) as follows. Multiply...Ch. 12.8 - Using (8.1), write the first four normalized...Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand the following functions in Legendre series....Ch. 12.9 - Expand each of the following polynomials in a...Ch. 12.9 - Expand each of the following polynomials in a...Ch. 12.9 - Expand each of the following polynomials in a...Ch. 12.9 - Find the best (in the least squares sense)...Ch. 12.9 - Find the best (in the least squares sense)...Ch. 12.9 - Find the best (in the least squares sense)...Ch. 12.9 - Prove the least squares approximation property of...Ch. 12.10 - Verify equations (10.3) and (10.4). (10.4)...Ch. 12.10 - The equation for the associated Legendre functions...Ch. 12.10 - Show that the functions Plm(x) for each m are a...Ch. 12.10 - Substitute the Pl(x) you found in Problems 4.3 or...Ch. 12.10 - Substitute the Pl(x) you found in Problems 4.3 or...Ch. 12.10 - Substitute the P1(x) you found in Problems 4.3 or...Ch. 12.10 - Show that...Ch. 12.10 - Write (10.7) with m replaced by m; then use...Ch. 12.10 - Use Problem 7 to show that...Ch. 12.10 - Derive (10.8) as follows: Multiply together the...Ch. 12.11 - Finish the solution of equation (11.2) when s=2....Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Solve the following differential equations by the...Ch. 12.11 - Consider each of the following problems as...Ch. 12.11 - Solve y=y by the Frobenius method. You should find...Ch. 12.12 - Show by the ratio test that the infinite series...Ch. 12.12 - Use (12.9) to show that: J2(x)=(2/x)J1(x)J0(x)Ch. 12.12 - Use (12.9) to show that: J1(x)+J3(x)=(4/x)J2(x)Ch. 12.12 - Use (12.9) to show that: (d/dx)J0(x)=J1(x)Ch. 12.12 - Use (12.9) to show that: (d/dx)xJ1(x)=xJ0(x)Ch. 12.12 - Use (12.9) to show that: J0(x)J2(x)=2(d/dx)J1(x)Ch. 12.12 - Use (12.9) to show that: limx0J1(x)/x=12Ch. 12.12 - Use (12.9) to show that: limx0x3/2J3/2(x)=312/...Ch. 12.12 - Use (12.9) to show that: x/2J1/2(x)=sinxCh. 12.13 - Using equations (12.9) and (13.1), write out the...Ch. 12.13 - Show that, in general for integral...Ch. 12.13 - Use equations (12.9) and (13.1) to show that:...Ch. 12.13 - Use equations (12.9) and (13.1) to show that:...Ch. 12.13 - Use equations (12.9) and (13.1) to show that:...Ch. 12.13 - Use equations (12.9) and (13.1) to show that: Show...Ch. 12.14 - By computer, plot graphs of Jp(x) for p=0,1,2,3,...Ch. 12.14 - From the graphs in Problem 1, read approximate...Ch. 12.14 - By computer, plot N0(x) for x from 0 to 15, and...Ch. 12.14 - From the graphs in Problem 3, read approximate...Ch. 12.14 - By computer, plot xJ1/2(x) for x from 0 to 4. Do...Ch. 12.14 - By computer, find 30 zeros of J0 and note that the...Ch. 12.15 - Prove equation (15.2) by a method similar to the...Ch. 12.15 - Solve equations (15.1) and (15.2) for Jp+1(x) and...Ch. 12.15 - Carry out the differentiation in equations (15.1)...Ch. 12.15 - Use equations (15.1) to (15.5) to do Problems 12.2...Ch. 12.15 - Using equations (15.4) and (15.5), show that...Ch. 12.15 - As in Problem 5, show that Jp1(x)=Jp+1(x) at every...Ch. 12.15 - (a) Using (15.2), show that 0J1(x)dx=J0(x)0=1. (b)...Ch. 12.15 - From equation (15.4), show that...Ch. 12.15 - Use L23 and L32 of the Laplace Transform Table...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Find the solutions of the following differential...Ch. 12.16 - Verify by direct substitution that the text...Ch. 12.16 - Use (16.5) to write the solutions of the following...Ch. 12.16 - Use ( 16.5 ) to write the solutions of the...Ch. 12.16 - Use (16.5) to write the solutions of the following...Ch. 12.16 - Use (16.5) to write the solutions of the following...Ch. 12.17 - Write the solutions of Problem 16.1 as spherical...Ch. 12.17 - From Problem (12.9) J1/2(x)=2/xsinx. Use (15.2) to...Ch. 12.17 - From Problems 13.3 and 13.5, Y1/2(x)=2/x cos x. As...Ch. 12.17 - Using (17.3) and the results stated in Problems 2...Ch. 12.17 - Show from (17.4) that hn(1)(x)=ixn1xddxneixx.Ch. 12.17 - Using (16.1) and (17.4) show that the spherical...Ch. 12.17 - (a) Solve the differential equation xy=y using...Ch. 12.17 - Using (16.1) and (16.2), verify that (a) the...Ch. 12.17 - Using (17.3) and (15.1) to (15.5), find the...Ch. 12.17 - Computer plot (a) I0(x),I1(x),I2(x), from x=0 to...Ch. 12.17 - From (17.4), show that hn(1)(ix)=ex/x.Ch. 12.17 - Use the Section 15 recursion relations and (17.4)...Ch. 12.17 - Use the Section 15 recursion relations and (17.4)...Ch. 12.17 - Use the Section 15 recursion relations and (17.4)...Ch. 12.17 - Use the Section 15 recursion relations and (17.4)...Ch. 12.17 - Use the Section 15 recursion relations and (17.4)...Ch. 12.18 - Verify equation (18.3) Hint: From equation (18.2),...Ch. 12.18 - Solve equation (18.3) to get equation (18.4).Ch. 12.18 - Prove Jp(x)Jp(x)Jp(x)Jp(x)=2xsinp as follows:...Ch. 12.18 - Using equation (13.3) and Problem 3, show that...Ch. 12.18 - Use the recursion relations of Section 15 (for N s...Ch. 12.18 - For the initial conditions =0,=0, show that the...Ch. 12.18 - Prob. 7PCh. 12.18 - Find =ddt=ddududldldt either from equations...Ch. 12.18 - Consider the shortening pendulum problem. Follow...Ch. 12.18 - The differential equation for transverse...Ch. 12.18 - A straight wire clamped vertically at its lower...Ch. 12.19 - Prove equation (19.10) in the following way. First...Ch. 12.19 - Given that J3/2(x)=2xsinxxcosx, use (19.10) to...Ch. 12.19 - Use (17.4) and (19.10) to write the orthogonality...Ch. 12.19 - Define Jp(z) for complex z by the power series...Ch. 12.19 - We obtained (19.10) for Jp(x),p0. It is, however,...Ch. 12.19 - By Problem 5,01xN1/2(x)N1/2(x)dx=0 if and are...Ch. 12.20 - Use the table above to evaluate the following...Ch. 12.20 - Use the table above to evaluate the following...Ch. 12.20 - Use the table above to evaluate the following...Ch. 12.20 - Use the table above to evaluate the following...Ch. 12.20 - Use the table above to evaluate the following...Ch. 12.20 - Use the table above to evaluate the following...Ch. 12.20 - Use the table above and the definitions in Section...Ch. 12.20 - Use the table above and the definitions in Section...Ch. 12.20 - Use the table above and the definitions in Section...Ch. 12.20 - Use the table above and the definitions in Section...Ch. 12.20 - To study the approximations in the table, computer...Ch. 12.20 - To study the approximations in the table, computer...Ch. 12.20 - To study the approximations in the table, computer...Ch. 12.20 - To study the approximations in the table, computer...Ch. 12.20 - To study the approximations in the table, computer...Ch. 12.20 - To study the approximations in the table, computer...Ch. 12.20 - To study the approximations in the table, computer...Ch. 12.20 - To study the approximations in the table, computer...Ch. 12.20 - Computer plot on the same axes several Ip(x)...Ch. 12.20 - As in Problem 19, study the Kp(x) functions. It is...Ch. 12.21 - For Problems 1 to 4, find one (simple) solution of...Ch. 12.21 - For Problems 1 to 4, find one (simple) solution of...Ch. 12.21 - For Problems 1 to 4, find one (simple) solution of...Ch. 12.21 - For Problems 1 to 4, find one (simple) solution of...Ch. 12.21 - Solve the differential equations in Problems 5 to...Ch. 12.21 - Solve the differential equations in Problems 5 to...Ch. 12.21 - Solve the differential equations in Problems 5 to...Ch. 12.21 - Solve the differential equations in Problems 5 to...Ch. 12.21 - Solve the differential equations in Problems 5 to...Ch. 12.21 - Solve the differential equations in Problems 5 to...Ch. 12.21 - For the differential equation in Problem 2, verify...Ch. 12.21 - Verify that the differential equation x4y+y=0 is...Ch. 12.21 - Verify that the the differential equation in...Ch. 12.22 - Verify equations (22.2), (22.3), (22.4), and...Ch. 12.22 - Solve (22.9) to get (22.10). If needed, see...Ch. 12.22 - Show that ex2/2Dex2/2f(x)=(Dx)f(x). Now set...Ch. 12.22 - Using (22.12) find the Hermite polynomials given...Ch. 12.22 - By power series, solve the Hermite differential...Ch. 12.22 - Substitute yn=ex2/2Hn(x) into (22.1) to show that...Ch. 12.22 - Prove that the functions Hn(x) are orthogonal on...Ch. 12.22 - In the generating function (22.16), expand the...Ch. 12.22 - Use the generating function to prove the recursion...Ch. 12.22 - Evaluate the normalization integral in (22.15)....Ch. 12.22 - Show that we have solved the following eigenvalue...Ch. 12.22 - Using Leibniz' rule (Section 3), carry out the...Ch. 12.22 - Using (22.19) verify (22.20) and also find L3(x)...Ch. 12.22 - Show that y=Ln(x) given in ( 22.18 ) satisfies (...Ch. 12.22 - Solve the Laguerre differential equation...Ch. 12.22 - Prove that the functions Ln(x) are orthogonal on...Ch. 12.22 - In (22.23), write the series for the exponential...Ch. 12.22 - Verify the recursion relations (22,24) as follows:...Ch. 12.22 - Evaluate the normalization integral in (22.22)....Ch. 12.22 - Using (22.25),(22.20), and Problem 13, find Lnk(x)...Ch. 12.22 - Verify that the polynomials Lnk(x) in ( 22.25 )...Ch. 12.22 - Verify that the polynomials given by (22.27) are...Ch. 12.22 - Verify the recursion relation relations (22.28) as...Ch. 12.22 - Show that the functions Lnk(x) are orthogonal on...Ch. 12.22 - Evaluate the normalization integrals ( 22.29 ) and...Ch. 12.22 - Solve the following eigenvalue problem (see end of...Ch. 12.22 - The functions which are of interest in the theory...Ch. 12.22 - Repeat Problem 27 for l=0,n=1,2,3.Ch. 12.22 - Show that Rp=pxD and Lp=px+D where D=d/dx, are...Ch. 12.22 - Find raising and lowering operators (see Problem...Ch. 12.23 - Use the generating function (5.1) to find the...Ch. 12.23 - Use the generating function to show that...Ch. 12.23 - Use (5.78e) to show that...Ch. 12.23 - Obtain the binomial coefficient result in Problem...Ch. 12.23 - Show that 0n(2l+1)Pl(x)=Pn(x)+Pn+1(x). Hint: Use...Ch. 12.23 - Using (10.6), (5.8), and Problem 2, evaluate...Ch. 12.23 - Show that, for l0,0bP(x)dx=0 if a and b are any...Ch. 12.23 - Show that (2l+1)x21Pl(x)=l(l+1)Pl+1(x)Pl1(x)....Ch. 12.23 - Evaluate 11xPi(x)Pn(x)dx,nl. Hint: Write (5.8a)...Ch. 12.23 - Use the recursion relations of Section 15 (and, as...Ch. 12.23 - Use the recursion relations of Section 15 (and, as...Ch. 12.23 - Use the recursion relations of Section 15 (and, as...Ch. 12.23 - Wre the recursion relations of Section 15 (and, as...Ch. 12.23 - Use the recursion relations of Section 15 (and, as...Ch. 12.23 - Use the result of Problem 18.4 and equations...Ch. 12.23 - Use (15.2) repeatedly to show that...Ch. 12.23 - Let be the first positive zero of J1(x) and let n...Ch. 12.23 - (a) Make the change of variables z=ex in the...Ch. 12.23 - (a) The generating function for Bessel functions...Ch. 12.23 - In the generating function equation of Problem 19,...Ch. 12.23 - In the generating function equation, Problem 19,...Ch. 12.23 - In the cos(xsin) series of Problem 20, let =0, and...Ch. 12.23 - Solve by power series 1x2yxy+n2y=0. The polynomial...Ch. 12.23 - (a) The following differential equation is often...Ch. 12.23 - In Problem 22.26, replace x by x/n in the y...Ch. 12.23 - Verify Bauers formula eixw=0(2l+1)iiji(x)Pl(w) as...Ch. 12.23 - Show that R=lx1x2D and L=lx+1x2D, where D=d/dx,...Ch. 12.23 - Show that the functions J0(t) and J0(t) are...Ch. 12.23 - Show that the Fourier cosine transform (Chapter 7,...Ch. 12.23 - Use the results of Chapter 7, Problems 12.18 and...
Additional Math Textbook Solutions
Find more solutions based on key concepts
In Hamilton County, Ohio, the mean number of days needed to sell a house is 86 days (Cincinnati Multiple Listin...
STATISTICS F/BUSINESS+ECONOMICS-TEXT
A retail establishment accepts either the American Express or the VISA credit card. A total of 24 percent of it...
A First Course in Probability (10th Edition)
In Exercises 5–12, find and sketch the domain for each function.
11.
University Calculus: Early Transcendentals (4th Edition)
Fill in each blank so that the resulting statement is true. If n is a counting number, bn, read ______, indicat...
College Algebra (7th Edition)
The 16 sequences in the sample space S.
Probability And Statistical Inference (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Find the circumference and area of the circle. Express answers in terms of and then round to the nearest tenth. Find the circumference in terms of C= (Type an exact answer in terms of x.) Find the circumference rounded to the nearest tenth. C= Find the area in terms of A= (Type an exact answer in terms of x.) Find the area rounded to the nearest tenth. A= 10 cmarrow_forwardSox & Sin (px) dx 0arrow_forwardIn Exercises 62-64, sketch a reasonable graph that models the given situation. The number of hours of daylight per day in your hometown over a two-year period The motion of a diving board vibrating 10 inches in each direction per second just after someone has dived off The distance of a rotating beam of light from a point on a wallarrow_forward
- 8 L 8 e ipx dxarrow_forwardThe manager of a fleet of automobiles is testing two brands of radial tires and assigns one tire of each brand at random to the two rear wheels of eight cars and runs the cars until the tires wear out. The data (in kilometers) follow. CAR BRAND1 BRAND2 DIFFERENCE = (BRAND1 - BF 1 36,925 33,018 3,907 2 45,300 43,280 2,020 3 36,240 35,500 740 4 32,100 31,200 900 5 37,210 37,015 195 6 48,360 46,800 1,560 7 38,200 37,810 390 8 33,500 33,215 285arrow_forwardDiabetes and obesity are serious health concerns in the United States and much of the developed world. Measuring the amount of body fat a person carries is one way to monitor weight control progress, but measuring it accurately involves either expensive X-ray equipment or a pool in which to dunk the subject. Instead body mass index (BMI) is often used as a proxy for body fat because it is easy to measure: BMI = mass(kg)/(height(m))² = 703 mass(lb)/(height(in))². In a study of 15 men at TXST, both BMI and body fat were measured. Researchers imported the data into statistical software for analysis. A few values are missing from the output. Complete the table by filling in the missing values. Model Summary S R-sq % (three decimal places) (two decimal places. e.g. 12.3456%, enter 12.35) Analysis of Variance Source Model Error Total DF SS MS F P 17.600 0.001 DF: whole numbers SS or MS; three decimal places 34.810 Does a simple linear regression model seem reasonable in this situation?…arrow_forward
- The use of electromyostimulation (EMS) as a method to train healthy skeletal muscle is studied. EMS sessions consisted of 30 contractions (4-second duration, 85 Hz) and were carried out three times per week for three weeks on 17 ice hockey players. The 10-meter skating performance test showed a standard deviation of 0.90 seconds. Is there strong evidence to conclude that the standard deviation of performance time exceeds the historical value of 0.75 seconds? Use a = 0.05.arrow_forwardOne-Sample Z Test Test of М = 45 vs not === 45 The assumed standard deviation = 2.8 VARIABLE N MEAN STDEV SE MEAN X Instructions: 46.377 2.500 0.626 95% CI (,) Fill in the missing values. N: Round the answer to the nearest whole number. Cl: Round to three decimal places. Z: Round to two decimal places. P: Round to three decimal places.arrow_forwardNeed detailed report solution without AI and Chatgpt,arrow_forward
- Based on the software output, write the fitted simple linear regression equation. Coefficients Term Coef SE Coef T-Value P-Value Constant 3.20 1.92 1.67 0.237 [Select] y= 0.600 0.566 1.06 0.400 +[Select] x Does a simple linear regression model seem reasonable in this situation? [Select]arrow_forward30.4. Suppose that f(2) has a pole of order m at zo. Show that f'(z) has a pole of order m + 1 at zo-arrow_forwardA drink filling machine, when in perfect adjustment, fills the bottles with 8 ounces of drink on an average. Any overfilling or underfilling results in the shutdown and readjustment of the machine. A sample of 20 bottles is selected, and the sample shows an average filling volume of 7.5 ounces. To determine whether the machine is properly adjusted, the correct set of hypotheses Ho: [Select] [Select] H₁: [Select] [Select] > [Select] [Select]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill


Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Inverse Functions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=9fJsrnE1go0;License: Standard YouTube License, CC-BY