Discrete Mathematics With Applications
5th Edition
ISBN: 9781337694193
Author: EPP, Susanna S.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.2, Problem 38ES
To determine
Design a finite-state automaton to accept the language defined by the regular expression in the referenced exercise from Section
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Construct a finite state automaton that recognizes all strings that end with 11.
ASAP!!
PLEASE TYPE ONLY***
Exercise 5.11.2: Counting binary strings.
Count the number of binary strings of length 10 subject to each of the following restrictions.
There is only one binary string of length ten with no 1's: 00000000000. There are 210 binary strings of length ten. Therefore the number of binary strings of length ten with at least one 1 is 210 - 1.
(b)
The string has at least one 1 and at least one 0.
(c)
The string contains exactly five 1's or it begins with a 0.
Exercise 5.11.4: Counting integer multiples.
(b)
How many integers in the range 1 through 140 are integer multiples of 2, 5, or 7?
Chapter 12 Solutions
Discrete Mathematics With Applications
Ch. 12.1 - If x and y are strings, the concatenation of x and...Ch. 12.1 - Prob. 2TYCh. 12.1 - Prob. 3TYCh. 12.1 - Prob. 4TYCh. 12.1 - Prob. 5TYCh. 12.1 - Prob. 6TYCh. 12.1 - Prob. 7TYCh. 12.1 - Use of a single dot in a regular expression stands...Ch. 12.1 - Prob. 9TYCh. 12.1 - If r is a regular expression, the notation r +...
Ch. 12.1 - Prob. 11TYCh. 12.1 - Prob. 12TYCh. 12.1 - Prob. 1ESCh. 12.1 - Prob. 2ESCh. 12.1 - Prob. 3ESCh. 12.1 - In 4—6, describe L1L2,L1L2, and (L1L2)*for the...Ch. 12.1 - Prob. 5ESCh. 12.1 - Prob. 6ESCh. 12.1 - Prob. 7ESCh. 12.1 - Prob. 8ESCh. 12.1 - In 7—9, add parentheses to emphasize the order of...Ch. 12.1 - Prob. 10ESCh. 12.1 - In 10—12, use the rules about order of precedence...Ch. 12.1 - Prob. 12ESCh. 12.1 - In 13—15, use set notation to derive the language...Ch. 12.1 - Prob. 14ESCh. 12.1 - Prob. 15ESCh. 12.1 - Prob. 16ESCh. 12.1 - In 16—18, write five strings that belong to the...Ch. 12.1 - Prob. 18ESCh. 12.1 - Prob. 19ESCh. 12.1 - Prob. 20ESCh. 12.1 - In 19—21, use words to describe the language...Ch. 12.1 - Prob. 22ESCh. 12.1 - In 22—24, indicate whether the given strings...Ch. 12.1 - Prob. 24ESCh. 12.1 - Prob. 25ESCh. 12.1 - Prob. 26ESCh. 12.1 - In 25—27, find a regular expression that defines...Ch. 12.1 - Let r, s, and t be regular expressions over...Ch. 12.1 - Prob. 29ESCh. 12.1 - Prob. 30ESCh. 12.1 - Prob. 31ESCh. 12.1 - In 31—39, write a regular expression to define the...Ch. 12.1 - Prob. 33ESCh. 12.1 - Prob. 34ESCh. 12.1 - Prob. 35ESCh. 12.1 - Prob. 36ESCh. 12.1 - Prob. 37ESCh. 12.1 - Prob. 38ESCh. 12.1 - Prob. 39ESCh. 12.1 - Prob. 40ESCh. 12.1 - Write a regular expression to define the set of...Ch. 12.2 - The five objects that make up a finite-state...Ch. 12.2 - The next-state table for an automaton shows the...Ch. 12.2 - In the annotated next-state table, the initial...Ch. 12.2 - A string w consisting of input symbols is accepted...Ch. 12.2 - The language accepted by a finite-state automaton...Ch. 12.2 - If N is the next-stale function for a finite-state...Ch. 12.2 - One part of Kleene’s theorem says that given any...Ch. 12.2 - The second part of Kleene’s theorem says that...Ch. 12.2 - A regular language is .__________Ch. 12.2 - Given the language consisting of all strings of...Ch. 12.2 - Find the state of the vending machine in Example...Ch. 12.2 - Prob. 2ESCh. 12.2 - Prob. 3ESCh. 12.2 - Prob. 4ESCh. 12.2 - Prob. 5ESCh. 12.2 - In 2—7, a finite-state automaton is given by a...Ch. 12.2 - In 2—7, a finite-state automaton is given by a...Ch. 12.2 - In 8 and 9, a finite-state automaton is given by...Ch. 12.2 - In 8 and 9, a finite-state automaton is given by...Ch. 12.2 - A finite-state automaton A given by the transition...Ch. 12.2 - A finite-state automaton A given by the transition...Ch. 12.2 - Prob. 12ESCh. 12.2 - Consider again the finite-state automaton of...Ch. 12.2 - In each of 14—19, (a) find the language accepted...Ch. 12.2 - Prob. 15ESCh. 12.2 - Prob. 16ESCh. 12.2 - Prob. 17ESCh. 12.2 - Prob. 18ESCh. 12.2 - Prob. 19ESCh. 12.2 - In each of 20—28, (a) design an automaton with the...Ch. 12.2 - Prob. 21ESCh. 12.2 - Prob. 22ESCh. 12.2 - Prob. 23ESCh. 12.2 - Prob. 24ESCh. 12.2 - Prob. 25ESCh. 12.2 - Prob. 26ESCh. 12.2 - In each of 20—28, (a) design an automaton with the...Ch. 12.2 - Prob. 28ESCh. 12.2 - Prob. 29ESCh. 12.2 - Prob. 30ESCh. 12.2 - In 29—47, design a finite-state automaton to...Ch. 12.2 - Prob. 32ESCh. 12.2 - Prob. 33ESCh. 12.2 - Prob. 34ESCh. 12.2 - In 29—47, design a finite-state automaton to...Ch. 12.2 - Prob. 36ESCh. 12.2 - Prob. 37ESCh. 12.2 - Prob. 38ESCh. 12.2 - Prob. 39ESCh. 12.2 - Prob. 40ESCh. 12.2 - Prob. 41ESCh. 12.2 - Prob. 42ESCh. 12.2 - Prob. 43ESCh. 12.2 - Prob. 44ESCh. 12.2 - Prob. 45ESCh. 12.2 - In 29—47, design a finite-state automaton to...Ch. 12.2 - Prob. 47ESCh. 12.2 - Prob. 48ESCh. 12.2 - Write a computer algorithm that simulates the...Ch. 12.2 - Prob. 50ESCh. 12.2 - Prob. 51ESCh. 12.2 - Prob. 52ESCh. 12.2 - Prob. 53ESCh. 12.2 - a. Let A be a finite-state automaton with input...Ch. 12.3 - Given a finite-state automaton A with...Ch. 12.3 - Prob. 2TYCh. 12.3 - Given states s and t in a finite-state automaton...Ch. 12.3 - Prob. 4TYCh. 12.3 - Prob. 5TYCh. 12.3 - Consider the finite-state automaton A given by the...Ch. 12.3 - Consider the finite-state automaton A given by the...Ch. 12.3 - Consider the finite-state automaon A discussed in...Ch. 12.3 - Consider the finite-state automaton given by the...Ch. 12.3 - Consider the finite-state automaton given by the...Ch. 12.3 - Consider the finite-state automaton given by the...Ch. 12.3 - Prob. 7ESCh. 12.3 - Prob. 8ESCh. 12.3 - Prob. 9ESCh. 12.3 - Prob. 10ESCh. 12.3 - Prob. 11ESCh. 12.3 - Prob. 12ESCh. 12.3 - Prob. 13ESCh. 12.3 - Prob. 14ESCh. 12.3 - Prob. 15ESCh. 12.3 - Prob. 16ESCh. 12.3 - Prob. 17ESCh. 12.3 - Prob. 18ES
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Need SOLUTION in 1 minute ASAP. Thankyou !!arrow_forward1. Design the minimum-state DFA that accepts all and only the strings of 0's and 1's that end in 010. To verify that you have designed the correct automaton, we will ask you to identify the true statement in a list of choices. These choices will involve: The number of loops (transitions from a state to itself). The number of transitions into a state (including loops) on input 1. The number of transitions into a state (including loops) on input 0. Count the number of transitions into each of your states ("in-transitions") on input 1 and also on input 0. Count the number of loops on input 1 and on input 0. Then, find the true statement in the following list. a) There are two states that have one in-transition on input 1. b) There are three states that have one in-transition on input 1. c) There are two states that have no in-transitions on input 0. d) There is one state that has one in-transition on input 1.arrow_forwardDesign a deterministic finite automaton that accepts all binary strings that correspond to a value divisible by 3. For example, it should accept 110 (since 6 is divisible by 3), but not 101 (since 5 is not divisible by 3).arrow_forward
- 11. a) Find the exponential generating function for the number of ways to arrange n letters,n ≥ 0, selected from each of the following words.i) HAWAII ii) MISSISSIPPI iii) ISOMORPHISMb) For section (ii) of part (a), what is the exponential generating function if the arrangementmust contain at least two I’s?arrow_forwardhello by Peter Linz, "Introduction to Formal Languages and Automaton", 6th edition, 2017. The cut is from chapter 2, section 1. thanks:))arrow_forwardA, 1 A.) Identify each of the symbols below [select] [select] M. [select] [select] 寸 SD [select] [select] [select] of [select] 17. 8. 6. 10 [select] 11 (select] 12 [select] 13 [select] 14 [select] dF 15 [select] 16 Narrow_forward
- Prove that if 5 processors are interconnected, at least two processors are directly connected to an identical number of processors. Pigeonhole Principle.arrow_forward1. Construct Finite Automata equivalent to the Regular expression. L = ab + (aa + bb)(a +b)*arrow_forwardExercise 4.21 Show that any n-bit integer has at most n distinct prime factors.arrow_forward
- Show that ADFA ∈ L, where ADFA = {< B,w > |B is a DFA that accepts input string w}.arrow_forwardHuman genetic material (DNA) is made up of sequences of the molecules adenosine (A), guanine (G), cytosine (C), and thymine (T), which are called bases. A codon is a sequence of three bases. Replicates are allowed, so AAA, CGC, and so forth are codons. Codons are important because each codon causes a different amino acid to be included in a protein. a. How many different codons are there? b. How many different codons are there in which all three bases are different? c. The bases A and G are called purines, while C and T are called pyrimidines. How many different codons are there in which the third base is a purine and the others are pyrimidines? d. What is the probability that all three bases are different? e. What is the probability that the third base is a purine and the others are pyrimidines?arrow_forward1) The generator polynomials for a binary convolutional code are given by 8₁(x) = X+X² 8₂(x) = 1 + X 83(x) = 1+X+X² a) What is the rate Rc of this code? b) Draw the state diagram, and trellis diagram for this encoder. c) What is the output sequence corresponding to the input message sequence 1101?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Finite State Machine (Finite Automata); Author: Neso Academy;https://www.youtube.com/watch?v=Qa6csfkK7_I;License: Standard YouTube License, CC-BY
Finite State Machine (Prerequisites); Author: Neso Academy;https://www.youtube.com/watch?v=TpIBUeyOuv8;License: Standard YouTube License, CC-BY