Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.2, Problem 21P
If the beam is made from wood having an allowable shear stress τallow = 400 psi, determine the maximum magnitude of P. Set d = 4 in.
Prob. 12-21
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
11-27. The steel cantilevered T-beam is made from two
plates welded together as shown. Determine the maximum
loads P that can be safely supported on the beam if the
allowable bending stress is oallow
allowable shear stress is
= 170 MPa and the
Tallow
= 95 MPa.
150 mm
H, 15 mm
T150 mm
P
15 mm
2 m
2 m
12-15. Determine the shear stress at points C and D
located on the web af the beam.
so kNim
-L8 m-
-1.8 m-
150 mm
25 mm
Цо mm
100 mm
18 mm
25 mm
Probs. 12-15/16
12-26. Determine the maximum shear stress acting in the
fiberglass beam at the section where the internal shear force
is maximum.
3 kNim
25 kNim
-2 m-
100 mm
18 mm
150 mm
12 mm
100 mm
18 mm
Chapter 12 Solutions
Statics and Mechanics of Materials (5th Edition)
Ch. 12.2 - In each case, calculate the value of Q and t that...Ch. 12.2 - If the beam is subjected to a shear force of V =...Ch. 12.2 - Prob. 2FPCh. 12.2 - Determine the absolute maximum shear stress in the...Ch. 12.2 - If the beam is subjected to a shear force of V =...Ch. 12.2 - If the beam is made from four plates and subjected...Ch. 12.2 - If the wide-flange beam is subjected to a shear of...Ch. 12.2 - If the wide-flange beam is subjected to a shear of...Ch. 12.2 - If the wide-flange beam is subjected to a shear of...Ch. 12.2 - If the beam is subjected to a shear of V = 30kN,...
Ch. 12.2 - If the wide-flange beam is subjected to a shear of...Ch. 12.2 - The wood beam has an allowable shear stress of...Ch. 12.2 - The shaft is supported by a thrust bearing at A...Ch. 12.2 - The shaft is supported by a thrust bearing at A...Ch. 12.2 - Determine the largest shear force V that the...Ch. 12.2 - If the applied shear force V = 18 kip, determine...Ch. 12.2 - The overhang beam is subjected to the uniform...Ch. 12.2 - The beam is made from a polymer and is subjected...Ch. 12.2 - Determine the maximum shear stress in the strut if...Ch. 12.2 - Determine the maximum shear force V that the strut...Ch. 12.2 - Prob. 15PCh. 12.2 - Plot the shear-stress distribution over the cross...Ch. 12.2 - Prob. 17PCh. 12.2 - If the wide-flange beam is subjected to a shear of...Ch. 12.2 - If the wide-flange beam is subjected to a shear of...Ch. 12.2 - Determine the length of the cantilevered beam so...Ch. 12.2 - If the beam is made from wood having an allowable...Ch. 12.2 - Determine the largest intensity w of the...Ch. 12.2 - If w = 800 lb/ft, determine the absolute maximum...Ch. 12.2 - Determine the shear stress at point B on the web...Ch. 12.2 - Determine the maximum shear stress acting at...Ch. 12.2 - Railroad tics must be designed to resist large...Ch. 12.2 - Prob. 27PCh. 12.2 - Prob. 28PCh. 12.2 - Determine the maximum shear stress in the T-beam...Ch. 12.2 - Determine the maximum shear stress in the T-beam...Ch. 12.2 - Prob. 31PCh. 12.3 - The two identical boards are bolted together to...Ch. 12.3 - Two identical 20-mm-thick plates are bolted to the...Ch. 12.3 - Prob. 8FPCh. 12.3 - Prob. 9FPCh. 12.3 - The beam is constructed from two boards fastened...Ch. 12.3 - The beam is constructed from two boards fastened...Ch. 12.3 - The beam is constructed from three boards. If it...Ch. 12.3 - The beam is constructed from three boards....Ch. 12.3 - Prob. 36PCh. 12.3 - The double T-beam is fabricated by welding the...Ch. 12.3 - The beam is constructed from three boards....Ch. 12.3 - A beam is constructed from three boards bolted...Ch. 12.3 - The simply supported beam is built up from three...Ch. 12.3 - Prob. 41PCh. 12.3 - Prob. 42PCh. 12.3 - Prob. 43PCh. 12.3 - The box beam is constructed from four boards that...Ch. 12.3 - The member consists of two plastic channel strips...Ch. 12.3 - The member consists of two plastic channel strips...Ch. 12.3 - Prob. 47PCh. 12.3 - Prob. 48PCh. 12 - The beam is fabricated from four boards nailed...Ch. 12 - Prob. 2RPCh. 12 - Prob. 3RPCh. 12 - Prob. 4RPCh. 12 - Prob. 5RPCh. 12 - Prob. 6RPCh. 12 - Prob. 7RPCh. 12 - The member consists of two triangular plastic...Ch. 12 - If the pipe is subjected to a shear of V = 15 kip,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- *11-8. The simply supported beam is made of timber that has an allowable bending stress of ơallow = 8.4 MPa and an allowable shear stress of Tallow = 0.7 MPa. Determine its smallest dimensions to the nearest multiples of 5 mm if it is rectangular and has height-to-width ratio of 1.5. 200 kN/m A В -0.9 m- -0.9 m- 1,5 b B.arrow_forwardF6-15. Determine the maximum stress in the beam's cross section. 50 Ib-ft 6 in. F6-15arrow_forwardI1-50. Determine the maximum tensile and compressive bending stress in the beam if it is subjected to a moment of M = 6kN m. 12 mm 12 mm -12 mm 75 mm 250 mm H-12 mmarrow_forward
- 12-34. The beam is constructed from two boards fastened together with three rows of naiks spaced s = 50 mm apart. If cach nail can support a 2.25-kN shear force, determine the maximum shear force V that can be applied to the beam. The allowable shear stress for the wood is Ta = 2.1 MPa. mm 150 mmarrow_forward*11-56. If the built-up beam is subjected to an internal moment of M = 75 kN - m, determine the maximum tensile and compressive stress acting in the beam. 150 mm 20 mm, so mm Tom150 mm 10 mm 300 mmarrow_forwardF12-9. The boards are bolted together to form the built-up beam. If the beamis subjected to ashear farce of V = 75 kN, determine the allowable maximum spacing of the bolts to the nearest multiples of 5 mm. Each bolt has a shear strength of 30 kN. 25 mm 12 mm 12 mm 100 mm e mm Koo mmarrow_forward
- The timber beam has a width of 6 in. Determine its height h so that it simultaneously reaches its allowable bending stress sallow = 1.50 ksi and an allowable shear stress of tallow = 50 psi. Also, what is the maximum load P that the beam can then support?arrow_forward11-22. Determine the minimum depth h of the beam to the nearest multiples of 5 mm that will safely support the loading shown. The allowable bending stress is oallow = 147 MPa and the allowable shear stress is 7allow = 70 MPa. The %3| beam has a uniform thickness of 75 mm. 60 kN/m A B- -3.6 m 1.8 marrow_forwardThe shaft is supported by a thrust bearing at A and journal bearing at D. If the shaft has the cross section shown, determine the absolute maximum bending stress in the shaft.arrow_forward
- The member consists of two plastic channel strips 0.5 in. thick, glued together at A and B. If the glue can support an allowable shear stress of tallow= 600 psi, determine the maximum intensity w0 of the triangular distributed loading that can be applied to the member based on the strength of the glue.arrow_forwardThe overhang beam is subjected to the uniform distributed load having an intensity of w = 50 kN>m. Determine the maximum shear stress in the beam.arrow_forwardThe shaft is supported by a thrust bearing at A and journal bearing at C. If the material has an allowable bending stress of sallow = 24 ksi, determine the required minimum diameter d of the shaft to the nearest 1 16 in.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license