(a)
Interpretation:
The type(s) of intermolecular forces existing in between the molecules of the given compounds have to be identified.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
(b)
Interpretation:
The type(s) of intermolecular forces existing in between the molecules of the given compounds have to be identified.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
(c)
Interpretation:
The type(s) of intermolecular forces existing in between the molecules of the given compounds have to be identified.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
General Chemistry
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY