Mathematics with Applications In the Management, Natural, and Social Sciences (12th Edition)
12th Edition
ISBN: 9780134767628
Author: Margaret L. Lial, Thomas W. Hungerford, John P. Holcomb, Bernadette Mullins
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.2, Problem 13E
To determine
To calculate:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls will upvote
Already got wrong chatgpt answer
.
In a town with 5000 adults, a sample of 50 is selected using SRSWOR and asked their opinion of a proposed municipal project; 30 are found to favor it and 20 oppose it. If, in fact, the adults of the town were equally divided on the proposal, what would be the probability of observing what has been observed? Approximate using the Binomial distribution. Compare this with the exact probability which is 0.0418.
1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set
Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k
components, where k is the greatest common divisor of {n, r,s}.
Chapter 12 Solutions
Mathematics with Applications In the Management, Natural, and Social Sciences (12th Edition)
Ch. 12.1 - Checkpoint 1
For what values of x is the function...Ch. 12.1 - Checkpoint 2
Find all intervals on which is...Ch. 12.1 - Checkpoint 3
Identity the x-values of all points...Ch. 12.1 - Checkpoint 4
Find the critical numbers for each of...Ch. 12.1 - Prob. 5CPCh. 12.1 - Prob. 6CPCh. 12.1 - Checkpoint 7 Find the locations of the local...Ch. 12.1 - Prob. 8CPCh. 12.1 - Checkpoint 9
If a sales function is given by...Ch. 12.1 - Prob. 1E
Ch. 12.1 - Prob. 2ECh. 12.1 - Prob. 3ECh. 12.1 - Prob. 4ECh. 12.1 - Prob. 5ECh. 12.1 - Prob. 6ECh. 12.1 - Prob. 7ECh. 12.1 - Prob. 8ECh. 12.1 - Find the intervals on which each function is...Ch. 12.1 - Find the intervals on which each function is...Ch. 12.1 - Prob. 13ECh. 12.1 - Prob. 12ECh. 12.1 - Prob. 15ECh. 12.1 - Find the intervals on which each function is...Ch. 12.1 - Find the intervals on which each function is...Ch. 12.1 - Find the intervals on which each function is...Ch. 12.1 - Prob. 11ECh. 12.1 - Prob. 14ECh. 12.1 - Prob. 19ECh. 12.1 - Prob. 20ECh. 12.1 - Prob. 21ECh. 12.1 - Determine the location of each local extremum of...Ch. 12.1 - Prob. 23ECh. 12.1 - Prob. 24ECh. 12.1 - Prob. 25ECh. 12.1 - Prob. 26ECh. 12.1 - Determine the location of each local extremum of...Ch. 12.1 - Determine the location of each local extremum of...Ch. 12.1 - Prob. 29ECh. 12.1 - Prob. 30ECh. 12.1 - Determine the location of each local extremum of...Ch. 12.1 - Prob. 32ECh. 12.1 - In Exercises 29–40, use the first-derivative test...Ch. 12.1 - In Exercises 29–40, use the first-derivative test...Ch. 12.1 - In Exercises 29–40, use the first-derivative test...Ch. 12.1 - Prob. 36ECh. 12.1 - Prob. 37ECh. 12.1 - Prob. 38ECh. 12.1 - Prob. 39ECh. 12.1 - Prob. 40ECh. 12.1 - Use the maximum/minimum finder on a graphing...Ch. 12.1 - Prob. 42ECh. 12.1 - Prob. 43ECh. 12.1 - Prob. 44ECh. 12.1 - Work the given exercises. (See Examples 1 and...Ch. 12.1 - Prob. 46ECh. 12.1 - Prob. 48ECh. 12.1 - Prob. 47ECh. 12.1 - Work the given exercises. (See Examples 5 and 9.)...Ch. 12.1 - Prob. 50ECh. 12.1 - Prob. 51ECh. 12.1 - 51. Physical Science A Boston Red Sox pitcher...Ch. 12.1 - Prob. 52ECh. 12.1 - Work the given exercises. (See Examples 5 and 9.)...Ch. 12.1 - Prob. 55ECh. 12.1 - Work these exercises. You may need to use the...Ch. 12.1 - Prob. 56ECh. 12.1 - Work these exercises. (See Examples 5 and 9.)...Ch. 12.1 - Work these exercises. (See Examples 5 and 9.) IBM...Ch. 12.1 - Work these exercises. You may need to use the...Ch. 12.1 - Work these exercises. You may need to use the...Ch. 12.1 - Prob. 62ECh. 12.1 - Prob. 63ECh. 12.1 - Prob. 64ECh. 12.1 - 65. Social Science A group of researchers found...Ch. 12.1 - Prob. 66ECh. 12.1 - Prob. 68ECh. 12.1 - Prob. 67ECh. 12.1 - Prob. 69ECh. 12.1 - Prob. 70ECh. 12.2 - Checkpoint 1 Let f(x)=x35x27x+99. Find f(x); f(x);...Ch. 12.2 - Prob. 2CPCh. 12.2 - Prob. 3CPCh. 12.2 - Prob. 4CPCh. 12.2 - Prob. 5CPCh. 12.2 - Prob. 6CPCh. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - Prob. 3ECh. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - Prob. 15ECh. 12.2 - Prob. 16ECh. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find . (See Examples...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - For each of these functions, find and (See...Ch. 12.2 - In Exercises 19 and 20, P(t) is the price of a...Ch. 12.2 - In Exercise 19 and 20, is the price of a certain...Ch. 12.2 - Physical Science Each of the functions in...Ch. 12.2 - Physical Science Each of the functions in...Ch. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - Prob. 25ECh. 12.2 - Prob. 26ECh. 12.2 - Find the largest open intervals on which each...Ch. 12.2 - Prob. 28ECh. 12.2 - Find the largest open intervals on which each...Ch. 12.2 - Find the largest open intervals on which each...Ch. 12.2 - Find the largest open intervals on which each...Ch. 12.2 - Find the largest open intervals on which each...Ch. 12.2 - Prob. 33ECh. 12.2 - Prob. 34ECh. 12.2 - Business In Exercises 33–36, find the point of...Ch. 12.2 - Business In Exercises 33–36, find the point of...Ch. 12.2 - Find all critical numbers of the functions in...Ch. 12.2 - Find all critical numbers of the functions in...Ch. 12.2 - Find all critical numbers of the functions in...Ch. 12.2 - Prob. 40ECh. 12.2 - Prob. 41ECh. 12.2 - Prob. 42ECh. 12.2 - Prob. 43ECh. 12.2 - Prob. 44ECh. 12.2 - Prob. 45ECh. 12.2 - Find all critical numbers of the functions in...Ch. 12.2 - Prob. 47ECh. 12.2 - Prob. 48ECh. 12.2 - Prob. 51ECh. 12.2 - Prob. 52ECh. 12.2 - Prob. 49ECh. 12.2 - Prob. 50ECh. 12.2 - Prob. 56ECh. 12.2 - Prob. 53ECh. 12.2 - Prob. 54ECh. 12.2 - Prob. 55ECh. 12.2 - Prob. 57ECh. 12.2 - Prob. 58ECh. 12.2 - Prob. 59ECh. 12.2 - Prob. 60ECh. 12.2 - Prob. 61ECh. 12.2 - Prob. 62ECh. 12.2 - 65. Social Science The population of Wyoming (in...Ch. 12.2 - Prob. 65ECh. 12.2 - Prob. 66ECh. 12.3 - Checkpoint 1
Find the location of the absolute...Ch. 12.3 - Prob. 2CPCh. 12.3 - Prob. 3CPCh. 12.3 - Prob. 4CPCh. 12.3 - Prob. 5CPCh. 12.3 - Checkpoint 6
In Example 9, suppose annual demand...Ch. 12.3 - Find the location of the absolute maximum and...Ch. 12.3 - Find the location of the absolute maximum and...Ch. 12.3 - Find the location of the absolute maximum and...Ch. 12.3 - Find the location of the absolute maximum and...Ch. 12.3 - Find the location of the absolute maximum and...Ch. 12.3 - Find the location of the absolute maximum and...Ch. 12.3 - Find the locations of the absolute extrema of each...Ch. 12.3 - Find the locations of the absolute extrema of each...Ch. 12.3 - Find the absolute extrema of each function on the...Ch. 12.3 - Find the absolute extrema of each function on the...Ch. 12.3 - Find the absolute extrema of each function on the...Ch. 12.3 - Find the absolute extrema of each function on the...Ch. 12.3 - Find the locations of the absolute extrema of each...Ch. 12.3 - Prob. 14ECh. 12.3 - Find the absolute extrema of each function on the...Ch. 12.3 - Find the absolute extrema of each function on the...Ch. 12.3 - Find the absolute extrema of each function on the...Ch. 12.3 - Prob. 18ECh. 12.3 - Prob. 19ECh. 12.3 - Prob. 20ECh. 12.3 - Prob. 21ECh. 12.3 - Prob. 23ECh. 12.3 - If possible, find an absolute extremum of each...Ch. 12.3 - If possible, find an absolute extremum of each...Ch. 12.3 - Prob. 26ECh. 12.3 - Work these problems. (See Example 5.)
25. Business...Ch. 12.3 - Work these problems. (See Example 5.)
26. Business...Ch. 12.3 - Work these exercises. Corporate Profits Total...Ch. 12.3 - Work these exercises.
30. Corporate Taxes For the...Ch. 12.3 - 31. Business A manufacturer produces gas grills...Ch. 12.3 - 32. Business Saltwater taffy can be sold wholesale...Ch. 12.3 - Work these exercises. Entertainment Expenditures...Ch. 12.3 - Work these exercises.
34. Consumer Spending...Ch. 12.3 - Work these exercises. Natural Science A lake...Ch. 12.3 - Prob. 38ECh. 12.3 - Prob. 39ECh. 12.3 - Prob. 40ECh. 12.3 - Prob. 41ECh. 12.3 - Prob. 42ECh. 12.3 - Prob. 43ECh. 12.3 - 42. Business A cylindrical can of volume 58 cubic...Ch. 12.3 - Prob. 45ECh. 12.3 - Prob. 46ECh. 12.3 - Prob. 47ECh. 12.3 - 46. Business A rectangular field is to be enclosed...Ch. 12.3 - 47. Business A mathematics book is to contain 36...Ch. 12.3 - Prob. 50ECh. 12.3 - 49. Business If the price charged for a candy bar...Ch. 12.3 - 50. Business A company makes plastic buckets for...Ch. 12.3 - 51. Business We can use the function
to model the...Ch. 12.3 - 52. Business A rock-and-roll band travels from...Ch. 12.3 - 53. Natural Science Homing pigeons avoid flying...Ch. 12.3 - 54. Business A company wishes to run a utility...Ch. 12.3 - Prob. 57ECh. 12.3 - Prob. 58ECh. 12.3 - Prob. 59ECh. 12.3 - Prob. 60ECh. 12.3 - Prob. 61ECh. 12.3 - 60. Business A restaurant has an annual demand for...Ch. 12.4 - Checkpoint 1
Find for
Ch. 12.4 - Prob. 2CPCh. 12.4 - Prob. 3CPCh. 12.4 - Prob. 4CPCh. 12.4 - Prob. 5CPCh. 12.4 - Prob. 6CPCh. 12.4 - Checkpoint 7
Suppose the sales function in Example...Ch. 12.4 - Prob. 1ECh. 12.4 - Prob. 2ECh. 12.4 - Find by implicit differentiation. (See Examples...Ch. 12.4 - Find by implicit differentiation. (See Examples...Ch. 12.4 - Prob. 5ECh. 12.4 - Prob. 6ECh. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Prob. 9ECh. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Find by implicit differentiation. (See Examples...Ch. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Find by implicit differentiation. (See Examples...Ch. 12.4 - Prob. 17ECh. 12.4 - Prob. 18ECh. 12.4 - Prob. 19ECh. 12.4 - Find at the given point. (See Example 5.)
20.
Ch. 12.4 - Find at the given point. (See Example 5.)
21.
Ch. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Find at the given point. (See Example 5.)
23.
Ch. 12.4 - Prob. 25ECh. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.4 - Prob. 29ECh. 12.4 - Prob. 30ECh. 12.4 - Prob. 31ECh. 12.4 - Prob. 32ECh. 12.4 - Find the equation of the tangent line to the curve...Ch. 12.4 - Prob. 34ECh. 12.4 - Prob. 35ECh. 12.4 - Prob. 36ECh. 12.4 - Prob. 37ECh. 12.4 - Prob. 38ECh. 12.4 - Prob. 39ECh. 12.4 - Prob. 40ECh. 12.4 - 41. Business A night club has approximated the...Ch. 12.4 - 42. Business The demand to download a hit single...Ch. 12.4 - Work these exercises. Bank of America For Bank of...Ch. 12.4 - Work these exercises.
44. For the equation given...Ch. 12.4 - Work these exercises. Walt Disney Company The...Ch. 12.4 - Work these exercises.
46. For the equation given...Ch. 12.4 - Prob. 47ECh. 12.4 - 48. Business At a certain online printing service,...Ch. 12.5 - Checkpoint 1
Given that R3 = 25n4, find when n =...Ch. 12.5 - Prob. 2CPCh. 12.5 - Prob. 3CPCh. 12.5 - Prob. 4CPCh. 12.5 - Prob. 5CPCh. 12.5 - Prob. 6CPCh. 12.5 - Prob. 7CPCh. 12.5 - Given that x and y are functions of time, find the...Ch. 12.5 - Given that x and y are functions of time, find the...Ch. 12.5 - Given that x and y are functions of time, find the...Ch. 12.5 - Given that x and y are functions of time, find the...Ch. 12.5 - Prob. 5ECh. 12.5 - Prob. 6ECh. 12.5 - Prob. 7ECh. 12.5 - Prob. 8ECh. 12.5 - Prob. 9ECh. 12.5 - Given that x and y are functions of time, find the...Ch. 12.5 - Work these exercises. (See Examples 1, 3, and 4.)...Ch. 12.5 - Prob. 12ECh. 12.5 - Work these exercises. (See Examples 1, 3, and...Ch. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Work these exercises. (See Examples 1, 3, and 4.)...Ch. 12.5 - Work these exercises. (See Examples 1, 3, and...Ch. 12.5 - Work these exercises. (See Examples 1, 3, and...Ch. 12.5 - Prob. 25ECh. 12.5 - Prob. 26ECh. 12.5 - Prob. 27ECh. 12.5 - Work these exercises. (See Examples 1, 3, and...Ch. 12.5 - 21. Business An architectural firm must decide on...Ch. 12.5 - 22. Social Science During a six-game hitless slump...Ch. 12.5 - Work these exercises. (See Example...Ch. 12.5 - Work these exercises. (See Example...Ch. 12.5 - Work these exercises.
27. Business The campus...Ch. 12.5 - Work these exercises.
28. Business Following a...Ch. 12.5 - 29. Business During a local political race, the...Ch. 12.5 - Prob. 20ECh. 12.5 - Work these exercises. Electricity from Coal and...Ch. 12.5 - Prob. 22ECh. 12.6 - Prob. 1CPCh. 12.6 - Prob. 2CPCh. 12.6 - Prob. 3CPCh. 12.6 - Prob. 4CPCh. 12.6 - Prob. 1ECh. 12.6 - Sketch the graph of the function. Identify any...Ch. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - Sketch the graph of the function. Identify any...Ch. 12.6 - Prob. 6ECh. 12.6 - Sketch the graph of the function. Identify any...Ch. 12.6 - Prob. 8ECh. 12.6 - Prob. 9ECh. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - Sketch the graph of the function. Identify any...Ch. 12.6 - Prob. 13ECh. 12.6 - Prob. 14ECh. 12.6 - Prob. 15ECh. 12.6 - Prob. 16ECh. 12.6 - Prob. 17ECh. 12.6 - Sketch the graph of the function. Identify any...Ch. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.6 - Prob. 21ECh. 12.6 - Prob. 22ECh. 12.6 - Prob. 23ECh. 12.6 - In Exercises 23–28, sketch the graph of a function...Ch. 12.6 - Prob. 25ECh. 12.6 - In Exercises 23–28, sketch the graph of a function...Ch. 12.6 - In Exercises 23–28, sketch the graph of a function...Ch. 12.6 - In Exercises 23–28, sketch the graph of a function...Ch. 12.6 - 29. Business The accompanying figure shows the...Ch. 12.6 - 30. Refer to the graph in Exercise 29. Which...Ch. 12.6 - Prob. 31ECh. 12.6 - Work these exercises. Average Temperature During...Ch. 12.6 - Prob. 33ECh. 12.6 - Prob. 34ECh. 12.6 - Prob. 35ECh. 12.6 - Prob. 36ECh. 12 - Prob. 1RECh. 12 - Prob. 2RECh. 12 - Prob. 3RECh. 12 - Prob. 4RECh. 12 - Prob. 5RECh. 12 - Prob. 6RECh. 12 - Prob. 7RECh. 12 - Prob. 8RECh. 12 - Prob. 9RECh. 12 - Prob. 10RECh. 12 - Prob. 11RECh. 12 - Prob. 12RECh. 12 - Prob. 13RECh. 12 - Prob. 14RECh. 12 - Prob. 15RECh. 12 - Prob. 16RECh. 12 - Prob. 17RECh. 12 - Prob. 18RECh. 12 - Prob. 19RECh. 12 - Prob. 20RECh. 12 - Prob. 21RECh. 12 - Prob. 22RECh. 12 - Prob. 23RECh. 12 - Prob. 24RECh. 12 - Prob. 25RECh. 12 - Prob. 26RECh. 12 - Prob. 27RECh. 12 - Prob. 28RECh. 12 - Prob. 29RECh. 12 - Prob. 30RECh. 12 - Prob. 31RECh. 12 - Prob. 32RECh. 12 - Prob. 33RECh. 12 - Prob. 34RECh. 12 - Prob. 35RECh. 12 - Prob. 36RECh. 12 - Prob. 37RECh. 12 - Prob. 38RECh. 12 - Prob. 39RECh. 12 - Prob. 40RECh. 12 - Prob. 41RECh. 12 - Prob. 42RECh. 12 - Prob. 43RECh. 12 - Prob. 44RECh. 12 - Prob. 45RECh. 12 - Prob. 46RECh. 12 - Prob. 47RECh. 12 - Prob. 48RECh. 12 - Prob. 49RECh. 12 - Work these exercises. Olympic High Jump The gold...Ch. 12 - Prob. 51RECh. 12 - Prob. 52RECh. 12 - Prob. 53RECh. 12 - Prob. 54RECh. 12 - Prob. 55RECh. 12 - Prob. 56RECh. 12 - Prob. 57RECh. 12 - Prob. 58RECh. 12 - 59. Business A landscaper needs to design an...Ch. 12 - Prob. 60RECh. 12 - Prob. 61RECh. 12 - Prob. 62RECh. 12 - Prob. 63RECh. 12 - 64. Business How many phones need to be produced...Ch. 12 - Prob. 65RECh. 12 - Prob. 66RECh. 12 - Prob. 67RECh. 12 - Prob. 68RECh. 12 - Prob. 69RECh. 12 - Prob. 70RECh. 12 - Prob. 71RECh. 12 - Prob. 72RECh. 12 - Prob. 73RECh. 12 - 74. Social Science A baseball player hits the ball...Ch. 12 - Prob. 1CECh. 12 - Prob. 2CECh. 12 - Prob. 3CECh. 12 - Prob. 4CECh. 12 - Prob. 5CECh. 12 - 6. What is the optimum time interval between...Ch. 12 - A pharmaceutical company is planning to gradually...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Question 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward16. Solve the given differential equation: y" + 4y sin (t)u(t 2π), - y(0) = 1, y'(0) = 0 Given, 1 (x² + 1)(x²+4) 1/3 -1/3 = + x²+1 x² +4 Send your answer in pen and paper don't r eputed ur self down Don't send the same previous answer that was Al generated Don't use any Al tool show ur answer in pe n and paper then takearrow_forwardR denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forward
- Question 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forwardQuestion 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forward
- Question 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardGood explanation it sure experts solve itarrow_forwardBest explains it not need guidelines okkarrow_forward
- Task number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardTask number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardActiv Determine compass error using amplitude (Sun). Minimum number of times that activity should be performed: 3 (1 each phase) Sample calculation (Amplitude- Sun): On 07th May 2006 at Sunset, a vessel in position 10°00'N 010°00'W observed the Sun bearing 288° by compass. Find the compass error. LMT Sunset: LIT: (+) 00d 07d 18h 00h 13m 40m UTC Sunset: 07d 18h 53m (added- since longitude is westerly) Declination (07d 18h): N 016° 55.5' d (0.7): (+) 00.6' Declination Sun: N 016° 56.1' Sin Amplitude = Sin Declination/Cos Latitude = Sin 016°56.1'/ Cos 10°00' = 0.295780189 Amplitude=W17.2N (The prefix of amplitude is named easterly if body is rising, and westerly if body is setting. The suffix is named same as declination) True Bearing=287.2° Compass Bearing= 288.0° Compass Error = 0.8° Westarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Fundamental Theorem of Calculus 1 | Geometric Idea + Chain Rule Example; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=hAfpl8jLFOs;License: Standard YouTube License, CC-BY