
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
8th Edition
ISBN: 9781259676512
Author: Kenneth H Rosen
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.1, Problem 19E
To determine
To verify:
The associative law.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
uestion 10 of 12 A
Your answer is incorrect.
L
0/1 E
This problem concerns hybrid cars such as the Toyota Prius that are powered by a gas-engine, electric-motor combination, but can also
function in Electric-Vehicle (EV) only mode. The figure below shows the velocity, v, of a 2010 Prius Plug-in Hybrid Prototype operating
in normal hybrid mode and EV-only mode, respectively, while accelerating from a stoplight. 1
80
(mph)
Normal hybrid-
40
EV-only
t (sec)
5
15
25
Assume two identical cars, one running in normal hybrid mode and one running in EV-only mode, accelerate together in a straight path
from a stoplight. Approximately how far apart are the cars after 15 seconds?
Round your answer to the nearest integer.
The cars are
1
feet apart after 15 seconds.
Q Search
M
34
mlp
CH
Find the volume of the region under the surface z = xy² and above the area bounded by x = y² and
x-2y= 8.
Round your answer to four decimal places.
У
Suppose that f(x, y) =
· at which {(x, y) | 0≤ x ≤ 2,-x≤ y ≤√x}.
1+x
D
Q
Then the double integral of f(x, y) over D is
|| | f(x, y)dxdy = |
Round your answer to four decimal places.
Chapter 12 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Ch. 12.1 - Prob. 1ECh. 12.1 - Find the values, if any, of the Boolean...Ch. 12.1 - a) Show that(1.1)+(0.1+0)=1 . b) Translate the...Ch. 12.1 - a) Show that(10)+(10)=1 . b) Translate the...Ch. 12.1 - Use a table to express the values of each of these...Ch. 12.1 - Use a table to express the values of each of these...Ch. 12.1 - Use a 3-cubeQ3to represent each of the Boolean...Ch. 12.1 - Use a 3-cubeQ3to represent each of the Boolean...Ch. 12.1 - What values of the Boolean...Ch. 12.1 - How many different Boolean functions are there of...
Ch. 12.1 - Prove the absorption lawx+xy=x using the other...Ch. 12.1 - Show thatF(x,y,z)=xy+xz+yz has the value 1 if and...Ch. 12.1 - Show thatxy+yz+xz=xy+yz+xz .Ch. 12.1 - 3Exercises 14-23 deal the Boolean algebra {0, 1}...Ch. 12.1 - Exercises 14-23 deal with the Boolean algebra {0,...Ch. 12.1 - Prob. 16ECh. 12.1 - Exercises 14-23 deal with the Boolean algebra {0,...Ch. 12.1 - Prob. 18ECh. 12.1 - Prob. 19ECh. 12.1 - Prob. 20ECh. 12.1 - Prob. 21ECh. 12.1 - Prob. 22ECh. 12.1 - Exercises 4-3 deal with the Boolean algebra {0, 1}...Ch. 12.1 - Prob. 24ECh. 12.1 - Prob. 25ECh. 12.1 - Prob. 26ECh. 12.1 - Prove or disprove these equalities. a)x(yz)=(xy)z...Ch. 12.1 - Find the duals of these Boolean expressions. a)x+y...Ch. 12.1 - Prob. 29ECh. 12.1 - Show that ifFandGare Boolean functions represented...Ch. 12.1 - How many different Boolean functionsF(x,y,z) are...Ch. 12.1 - How many different Boolean functionsF(x,y,z) are...Ch. 12.1 - Show that you obtain De Morgan’s laws for...Ch. 12.1 - Show that you obtain the ab,sorption laws for...Ch. 12.1 - In Exercises 35-42, use the laws in Definition 1...Ch. 12.1 - In Exercises 35-42, use the laws in Definition to...Ch. 12.1 - Prob. 37ECh. 12.1 - Prob. 38ECh. 12.1 - In Exercises 35-42, use the laws in Definition 1...Ch. 12.1 - Prob. 40ECh. 12.1 - Prob. 41ECh. 12.1 - Prob. 42ECh. 12.1 - Prob. 43ECh. 12.2 - Find a Boolean product of the Boolean...Ch. 12.2 - Find the sum of products expansions of these...Ch. 12.2 - Find the sum-of-products expansions of these...Ch. 12.2 - Find the sum-of-products expansions of the Boolean...Ch. 12.2 - Find the sum-of -products expansion of the Boolean...Ch. 12.2 - Find the sum-of-products expansion of the Boolean...Ch. 12.2 - Another way to find a Boolean expression that...Ch. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - Another way to find a Boolean expression that...Ch. 12.2 - Prob. 11ECh. 12.2 - Express each of these Boolean functions using the...Ch. 12.2 - Express each of the Boolean functions in...Ch. 12.2 - Show that a)x=xx . b)xy=(xy)(xy) . c)x+y=(xx)(yy)...Ch. 12.2 - Prob. 15ECh. 12.2 - Show that{} is functionally complete using...Ch. 12.2 - Express each of the Boolean functions in Exercise...Ch. 12.2 - Express each of the Boolean functions in Exercise...Ch. 12.2 - Show that the set of operators{+,} is not...Ch. 12.2 - Are these sets of operators functionally complete?...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - Construct circuits from inverters, AND gates, and...Ch. 12.3 - Design a circuit that implements majority voting...Ch. 12.3 - Design a circuit for a light fixture controlled by...Ch. 12.3 - Show how the sum of two five-bit integers can be...Ch. 12.3 - Construct a circuit for a half subtractor using...Ch. 12.3 - Construct a circuit for a full subtractor using...Ch. 12.3 - Use the circuits from Exercises 10 and 11 to find...Ch. 12.3 - Construct a circuit that compares the two-bit...Ch. 12.3 - Construct a circuit that computes the product of...Ch. 12.3 - Use NAND gates to construct circuits with these...Ch. 12.3 - Use NOR gates to construct circuits for the...Ch. 12.3 - Construct a half adder using NAND gates.Ch. 12.3 - Construct a half adder using NOR gates.Ch. 12.3 - Construct a multiplexer using AND gates, OR gates,...Ch. 12.3 - Find the depth of a) the circuit constructed in...Ch. 12.4 - Prob. 1ECh. 12.4 - Find the sum-of-products expansions represented by...Ch. 12.4 - Draw the K-maps of these sum-of-products...Ch. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - a) Draw a K-map for a function in three variables....Ch. 12.4 - Use K-maps to find simpler circuits with the same...Ch. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Construct a K-map for F(x,y,z) =xz + yz+y z. Use...Ch. 12.4 - Draw the 3-cube Q3 and label each vertex with the...Ch. 12.4 - Prob. 11ECh. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - a) Draw a K-map for a function in four variables....Ch. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - Find the cells in a K-map for Boolean functions...Ch. 12.4 - How many cells in a K-map for Boolean functions...Ch. 12.4 - a) How many cells does a K-map in six variables...Ch. 12.4 - Show that cells in a K-map for Boolean functions...Ch. 12.4 - Which rows and which columns of a 4 x 16 map for...Ch. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Use the Quine-McCluskey method to simplify the...Ch. 12.4 - Use the Quine—McCluskey method to simp1i’ the...Ch. 12.4 - Prob. 24ECh. 12.4 - Use the Quine—McCluskey method to simplify the...Ch. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.4 - Prob. 29ECh. 12.4 - Prob. 30ECh. 12.4 - Prob. 31ECh. 12.4 - Prob. 32ECh. 12.4 - show that products of k literals correspond to...Ch. 12 - Define a Boolean function of degreen.Ch. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Prob. 6RQCh. 12 - Explain how to build a circuit for a light...Ch. 12 - Prob. 8RQCh. 12 - Is there a single type of logic gate that can be...Ch. 12 - a) Explain how K-maps can be used to simplify...Ch. 12 - a) Explain how K-maps can be used to simplify...Ch. 12 - a) What is a don’t care condition? b) Explain how...Ch. 12 - a) Explain how to use the Quine-McCluskev method...Ch. 12 - Prob. 1SECh. 12 - Prob. 2SECh. 12 - Prob. 3SECh. 12 - Prob. 4SECh. 12 - Prob. 5SECh. 12 - Prob. 6SECh. 12 - Prob. 7SECh. 12 - Prob. 8SECh. 12 - Prob. 9SECh. 12 - Prob. 10SECh. 12 - Prob. 11SECh. 12 - Prob. 12SECh. 12 - Prob. 13SECh. 12 - Prob. 14SECh. 12 - Prob. 15SECh. 12 - Prob. 16SECh. 12 - How many of the 16 Boolean functions in two...Ch. 12 - Prob. 18SECh. 12 - Prob. 19SECh. 12 - Design a circuit that determines whether three or...Ch. 12 - Prob. 21SECh. 12 - A Boolean function that can be represented by a...Ch. 12 - Prob. 23SECh. 12 - Prob. 24SECh. 12 - Given the values of two Boolean variablesxandy,...Ch. 12 - Prob. 2CPCh. 12 - Prob. 3CPCh. 12 - Prob. 4CPCh. 12 - Prob. 5CPCh. 12 - Prob. 6CPCh. 12 - Prob. 7CPCh. 12 - Prob. 8CPCh. 12 - Prob. 9CPCh. 12 - Given the table of values of a Boolean function,...Ch. 12 - Prob. 11CPCh. 12 - Prob. 12CPCh. 12 - Prob. 1CAECh. 12 - Prob. 2CAECh. 12 - Prob. 3CAECh. 12 - Prob. 4CAECh. 12 - Prob. 5CAECh. 12 - Prob. 6CAECh. 12 - Prob. 7CAECh. 12 - Describe some of the early machines devised to...Ch. 12 - Explain the difference between combinational...Ch. 12 - Prob. 3WPCh. 12 - Prob. 4WPCh. 12 - Find out how logic gates are physically...Ch. 12 - Explain howdependency notationcan be used to...Ch. 12 - Describe how multiplexers are used to build...Ch. 12 - Explain the advantages of using threshold gates to...Ch. 12 - Describe the concept ofhazard-free switching...Ch. 12 - Explain how to use K-maps to minimize functions of...Ch. 12 - Prob. 11WPCh. 12 - Describe what is meant by the functional...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- D The region D above can be describe in two ways. 1. If we visualize the region having "top" and "bottom" boundaries, express each as functions of and provide the interval of x-values that covers the entire region. "top" boundary 92(x) = | "bottom" boundary 91(x) = interval of values that covers the region = 2. If we visualize the region having "right" and "left" boundaries, express each as functions of y and provide the interval of y-values that covers the entire region. "right" boundary f2(y) = | "left" boundary fi(y) =| interval of y values that covers the region =arrow_forwardFind the volume of the region under the surface z = corners (0,0,0), (2,0,0) and (0,5, 0). Round your answer to one decimal place. 5x5 and above the triangle in the xy-plane witharrow_forwardGiven y = 4x and y = x² +3, describe the region for Type I and Type II. Type I 8. y + 2 -24 -1 1 2 2.5 X Type II N 1.5- x 1- 0.5 -0.5 -1 1 m y -2> 3 10arrow_forward
- Given D = {(x, y) | O≤x≤2, ½ ≤y≤1 } and f(x, y) = xy then evaluate f(x, y)d using the Type II technique. 1.2 1.0 0.8 y 0.6 0.4 0.2 0- -0.2 0 0.5 1 1.5 2 X X This plot is an example of the function over region D. The region identified in your problem will be slightly different. y upper integration limit Integral Valuearrow_forwardThis way the ratio test was done in this conflicts what I learned which makes it difficult for me to follow. I was taught with the limit as n approaches infinity for (an+1)/(an) = L I need to find the interval of convergence for the series tan-1(x2). (The question has a table of Maclaurin series which I followed as well) https://www.bartleby.com/solution-answer/chapter-92-problem-7e-advanced-placement-calculus-graphical-numerical-algebraic-sixth-edition-high-school-binding-copyright-2020-6th-edition/9781418300203/2c1feea0-c562-4cd3-82af-bef147eadaf9arrow_forwardSuppose that f(x, y) = y√√r³ +1 on the domain D = {(x, y) | 0 ≤y≤x≤ 1}. D Then the double integral of f(x, y) over D is [ ], f(x, y)dzdy =[ Round your answer to four decimal places.arrow_forward
- ***Please do not just simply copy and paste the other solution for this problem posted on bartleby as that solution does not have all of the parts completed for this problem. Please answer this I will leave a like on the problem. The data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forwardThe data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forwardThe following relates to Problems 4 and 5. Christchurch, New Zealand experienced a major earthquake on February 22, 2011. It destroyed 100,000 homes. Data were collected on a sample of 300 damaged homes. These data are saved in the file called CIEG315 Homework 4 data.xlsx, which is available on Canvas under Files. A subset of the data is shown in the accompanying table. Two of the variables are qualitative in nature: Wall construction and roof construction. Two of the variables are quantitative: (1) Peak ground acceleration (PGA), a measure of the intensity of ground shaking that the home experienced in the earthquake (in units of acceleration of gravity, g); (2) Damage, which indicates the amount of damage experienced in the earthquake in New Zealand dollars; and (3) Building value, the pre-earthquake value of the home in New Zealand dollars. PGA (g) Damage (NZ$) Building Value (NZ$) Wall Construction Roof Construction Property ID 1 0.645 2 0.101 141,416 2,826 253,000 B 305,000 B T 3…arrow_forward
- Rose Par posted Apr 5, 2025 9:01 PM Subscribe To: Store Owner From: Rose Par, Manager Subject: Decision About Selling Custom Flower Bouquets Date: April 5, 2025 Our shop, which prides itself on selling handmade gifts and cultural items, has recently received inquiries from customers about the availability of fresh flower bouquets for special occasions. This has prompted me to consider whether we should introduce custom flower bouquets in our shop. We need to decide whether to start offering this new product. There are three options: provide a complete selection of custom bouquets for events like birthdays and anniversaries, start small with just a few ready-made flower arrangements, or do not add flowers. There are also three possible outcomes. First, we might see high demand, and the bouquets could sell quickly. Second, we might have medium demand, with a few sold each week. Third, there might be low demand, and the flowers may not sell well, possibly going to waste. These outcomes…arrow_forwardConsider the function f(x) = 2x² - 8x + 3 over the interval 0 ≤ x ≤ 9. Complete the following steps to find the global (absolute) extrema on the interval. Answer exactly. Separate multiple answers with a comma. a. Find the derivative of f (x) = 2x² - 8x+3 f'(x) b. Find any critical point(s) c within the intervl 0 < x < 9. (Enter as reduced fraction as needed) c. Evaluate the function at the critical point(s). (Enter as reduced fraction as needed. Enter DNE if none of the critical points are inside the interval) f(c) d. Evaluate the function at the endpoints of the interval 0 ≤ x ≤ 9. f(0) f(9) e. Based on the above results, find the global extrema on the interval and where they occur. The global maximum value is at a The global minimum value is at xarrow_forwardDetermine the values and locations of the global (absolute) and local extrema on the graph given. Assume the domain is a closed interval and the graph represents the entirety of the function. 3 y -6-5-4-3 2 1 -1 -2 -3 Separate multiple answers with a comma. Global maximum: y Global minimum: y Local maxima: y Local minima: y x 6 at a at a at x= at x=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell


College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License