Concept explainers
Block A has a mass of 10 kg, and blocks B and C have masses of 5 kg each. Knowing that the blocks are initially at rest and that B moves through 3 m in 2 s, determine (a) the magnitude of the force P, (b) the tension in the cord AD. Neglect the masses of the pulleys and axle friction.
Fig. P12.28
(a)
Find the magnitude of the force P.
Answer to Problem 12.28P
The magnitude of the force P is
Explanation of Solution
Given information:
The mass of block A
The mass of blocks B
The mass of blocks C
The initially block B
The distance of movement for block B
The time taken by block B to move 3 m (t) is 2 s.
Calculation:
Sketch the system with position of blocks as shown in Figure 1.
Write the general equation of weight (W):
Here, m is the mass, g is the acceleration due to gravity.
Refer Figure (1).
Consider the position of y be positive downward.
Consider the constraint of cord AD.
Write total length of cable connecting block A and block D.
Here,
Differentiate Equation (1) with respect to t to write velocity of the blocks.
Here,
Differentiate Equation (2) with respect to t to write acceleration of the blocks.
Here,
Consider the constraint of cord BC.
Write total length of cable connecting block A and block D.
Here,
Differentiate Equation (4) with respect to t to write velocity of the blocks.
Here,
Differentiate Equation (5) with respect to t to write acceleration of the blocks.
Here,
Substitute
The motion of blocks is uniform.
Find the acceleration of block B
Here,
Substitute
Substitute 3 m for
Sketch the free body diagram of pulley D as shown in Figure 2.
Refer Figure (2),
Consider equilibrium along y-axis.
Here,
Sketch the free body diagram of block A as shown in Figure (3).
Apply Newton’s law of motion along y-axis.
Here,
Substitute
Sketch the free body diagram of block C as shown in Figure (4).
Refer Figure (4),
Apply Newton’s law of motion along y-axis.
Here,
Substitute
Find the tension in the cord BC using Equation (7).
Substitute
Substitute 10 kg for
Sketch the free body diagram of block B as shown in Figure (5).
Refer Figure (5),
Find the magnitude of the force P.
Apply Newton’s law of motion along y-axis.
Here,
Substitute
Substitute 5 kg for
Thus, the magnitude of the force P is
(b)
Find the tension in the cord AD.
Answer to Problem 12.28P
The tension in the cord AD is
Explanation of Solution
Calculation:
Find the tension in the cord AD using Equation (8).
Substitute
Thus, the tension in the cord is
Want to see more full solutions like this?
Chapter 12 Solutions
VECTOR MECHANIC
Additional Engineering Textbook Solutions
Statics and Mechanics of Materials (5th Edition)
Engineering Mechanics: Statics
Fox and McDonald's Introduction to Fluid Mechanics
Vector Mechanics for Engineers: Statics, 11th Edition
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Heating Ventilating and Air Conditioning: Analysis and Design
- A system of blocks is pulled by a force P. The string connecting blocks A and B passes over a pulley whose coefficient of friction between string and pulley is 0.25. The coefficient of friction between surface and blocks is 0.20. Block A weighs 200N and block B weighs 30ON. Determine, a. the minimum value of P for impending motion to the right. b. the tension connecting block B. B= 30° В A 30°arrow_forwardapplied mechanics 2arrow_forward2- The two blocks shown are originally at rest. Neglecting the masses of the pulleys and the effect of friction in the pulleys and assuming that the coefficients of friction between block A and the horizontal surface are µz = 0.25 and u = 0.20, determine (a) the acceleration of each block, (b) the tension in the cable.arrow_forward
- A 54-kg pilot flies a jet trainer in a half vertical loop of 1200-m radius so that the speed of the trainer decreases at a constant rate. Knowing that the pilot's apparent weights at Points A and C are 1680 N and 350 N, respectively, determine the force exerted on her by the seat of the trainer when the trainer is at Point B. C 1200 m В Aarrow_forwardI need the answer as soon as possiblearrow_forwardDynamics Question 12.6arrow_forward
- PROBLEM 13.19 The system shown, consisting of a 20-kg collar A and a 10-kg counterweight B, is at rest when a constant 500-N force is applied to collar A. (a) Determine the velocity of A just before it hits the support at C. (b) Solve part a assuming that the counterweight B is replaced by a 98.1-N downward force. Ignore friction and the mass of the pulleys. V₁ = 3.16 m/s = 5.48 m/sarrow_forwardA series of small packages, each with a mass of 0.5 kg, are discharged from a conveyor belt as shown. Knowing that the coefficient of static friction between each package and the conveyor belt is 0.4, determine (a) the force exerted by the belt on the package just after it has passed point A, (b) the angle 0 defining the point B where the packages first slip relative to the belt. 1 m/s А B. 250 mmarrow_forwardPravinbhaiarrow_forward
- A series of small packages, each with a mass of 0.5 kg, are discharged from a conveyor belt as shown. Knowing that the coefficient of static friction between each package and the conveyor belt is 0.4, determine (a) the force exerted by the belt on the package just after it has passed point A, (b) the angle 0 defining the point B where the packages first slip relative to the belt.arrow_forwardThe crate/box shown has a square shape, an in-plane size of 10 ft X 10 ft and a uniformly distributed 300 lb weight. It is hung on an overhead roller conveyer and being transported. The crate is at rest when a horizontal force P of 40 lb is applied at the point E, which is 4 ft above the bottom of the box. Knowing that the crate starts to move from rest and at the instant t it reaches a speed of 9.3 ft/s. Neglect the frictions at the hinges A and B and between the rollers and the rail track. Answer the following questions: a) Draw FBD and KD of the box. b) What kind of motion the crate is moving in? c) Write out the motion equations. d) Find the acceleration at the crate's mass center and the pin forces at A and B. e) Determine the distance d and time t of the motion when the speed reaches 9.3 ft/s. A B P 10 ft E 4 ft D + 10 ftarrow_forwardThe two blocks shown are originally at rest. Neglecting the masses of the pulleys and the effect of friction in the pulleys and knowing that the coefficients of friction between the blocks and the inclines are ls = 0.25 and = 0.2, determine (a) the acceleration of each block, (b) the tension in the cable. 200 lb 90° 20° 300 lb Вarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY