Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259977206
Author: BEER, Ferdinand P., Johnston Jr., E. Russell, Mazurek, David, Cornwell, Phillip J., SELF, Brian
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.1, Problem 12.25P
Determine the maximum theoretical speed that a 1225 kg automobile starting from rest can reach after traveling 400 m if air resistance is considered. Assume that the coefficient of static friction between the tires and the pavement is 0.70, that the automobile has front-wheel drive, that the front wheels support 62 percent of the automobile’s weight, and that the aerodynamic drag D has a magnitude D = 0.575v2, where D and v are expressed in newtons and m/s, respectively.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume that b=0.22m and that the coefficient of kinetic friction between the rope and the inclined surface is μk=0.47. Let y (in metres) be the distance travelled by the rope after it has been released from rest.
What would be the maximum compression (in m) of the spring?
A 100-kg box is towed to move horizontally from rest by a constant force P=200 N. The kinetic friction is μk =0.1. The angle of the force P is θ=30° with respect to the horizontal direction. The acceleration due to gravity is g=9.81 m/s2.
(4) Calculate the magnitude of the normal force from the ground N=___(N) (two decimal places).
Chapter 12 Solutions
Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- To climb a 400 meter high mountain, you have two options, a straight line route with a 40 ° slope or a route composed of 5 equal sections (same length) each with a 20 ° slope. If traveling in a car with a mass of 1280 kg and a maximum power of 88 kW, Determine (assume the whole car as a particle): a) Is the friction enough to prevent the car from sliding? The coefficient of static friction of the tires with the ground is 0.95. b) What is the power required to climb the 40 ° slope at a constant speed of 40 km / h? Does the car have enough power to go up at that speed? c) What is the constant speed at which the 40 ° slope can be climbed with a 60 kW power? d) What is the power required to climb a 20 ° slope at 40 km/h? Does the car has enough power to go up at that speed? e) In which of the two trajectories does the car do more work? Ignore the resistance of the air and rolling resistance and radius of curves between sections of the compound route. Please add the free body diagram.arrow_forwardA 100-kg box is towed to move horizontally from rest by a constant force P=200 N. The kinetic friction is μk =0.1. The angle of the force P is θ=30° with respect to the horizontal direction. The acceleration due to gravity is g=9.81 m/s2. (5) Calculate the magnitude of the the friction force F= ___(N) (two decimal places).arrow_forward6. A 60-kg suitcase slides 5 mm down the smooth ramp with an initial velocity down the ramp of Av_A = 2.6 m/s, and the coefficient of kinetic friction along AC is μk = 0.2. Please solve both parts.arrow_forward
- As speed as possible pleasearrow_forwardA crate slides down an inclined plane without friction. If it is released from rest and reaches a speed of 6 m/s after sliding a distance of 2.5 m, what is the angle of inclination of the plane with respect to the horizontal?arrow_forward1. A small object of mass m is located on the surface of the disk with radius R if the magnitude of the coefficient of static friction between the object and the disc is u and the disc rotates with a certain angular speed so that the object of mass m slides from the disc which is at a height h. Prove that the horizontal distance traveled by the object is x = JuR2h 2. A child of mass 80 kg sits on a spinning disc and begins to slide if the coefficient of friction is 0.5 and the angular velocity of the rotating disc is 10rad/s. calculate the maximum radius R provided that the child can still sit and remain on the spinning disc? Compare your answer with the manual solution and use Matlab A beautiful jumper with mass m jumps from a height of 10 m (a Calculate the initial velocity V at the time of the diver's collision with the water and the estimated time from the time of the dive to the collision. Assume that the buoyant force of the water is able to balance the magnitude of the…arrow_forward
- A 60 kg block slides along the top of a 100 kg block with an acceleration of 2.0 m/s? when a horizontal force F of 340 N is applied. The 100 kg block sits on a horizontal frictionless surface, but there is friction between the two blocks. 100kg (a) Find the coefficient of kinetic friction between the blocks. (b) Find the acceleration of the 100 kg block during the time that the 60 kg block remains in contact. m/s2 eBookarrow_forwardA 130-lb block is pulled up by a constant force P through a cable to move up the inclined surface with a constant acceleration of a = 7 ft/s². The coefficient of kinetic friction between the block and the inclined surface is HK = 0.25. The angle between the cable and inclined surface as shown is 0 = 38⁰. Neglect size of the block, (Figure 1) Figure 30° P 1 of 1 > Part A Determine the magnitude of the force P applied on the cable. Express your answer to three significant figures and include the appropriate units. P= Value Submit Part B μA O Submit Request Answer Provide Feedback P Pearson N = Value Determine the normal force N exerted on the block from the inclined surface. Express your answer to three significant figures and include the appropriate units. μA Units Request Answer wwwww wwwww Hey ? Units Review ? Next >arrow_forwardA rigid body weighing ten pounds has an instantaneous velocity of 4ft/s. In the same instant, it experiences a force equal to 8t2 pounds. At t = 2 seconds, what should be the velocity of this rigid body. Assume a kinetic friction coefficient to be 0.2.arrow_forward
- A W disk = 5 lb disk is travelling around in a circle of radius ₁ with an initial tangential velocity of (UB)₁. The cord is pulled down through the hole at a constant velocity of ur. After a few seconds, the disk has a final speed of Vf. Neglect friction and the size of the ball. F|VI| T2 = t= UT B (VB)₁ T1 MB Values for the figure are given in the following table. Note the figure may not be to scale. Variable Value ft 15 (VB)₁ 5 r₁ ft S 2.5 ft ft S 4.5 12 S Vr a. Determine the tangential component of the velocity of the disk when it reaches its final speed, (V₂)+ b. Determine the radius of the rope from the disk to the hole when the disk reaches its final speed, 12. c. Determine the time required for the disk to reach its final speed, t. Round your final answers to 3 significant digits/figures. ft (V₂)t = S S A ftarrow_forwardTwo blocks of mass m1 = 340 g and m2 = 750 g are pushed by a force. The coefficient of kinetic friction between each block and the ground is 0.4. The blocks move together (with one pushing the other) with an acceleration of 225 cm/s2. What is the value of the applied force in Newtons? Hint: Make sure to include the frictional force for each block.arrow_forwardA cord passing over a pulley connects two masses, as shown, where m1 = 3.80 kg and m2 = 7.20 kg. The system accelerates with a magnitude of 0.94 m/s2. The coefficient of kinetic friction between the masses and the incline is the same for both masses. Assume the pulley is frictionless, and the cord is massless. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.) What is the tension (in N) in the cord?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License