University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem Q12.6DQ
In hot-air ballooning, a large balloon is filled with air heated by a gas burner at the bottom. Why must the air be heated? How does the balloonist control ascent and descent?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
University Physics (14th Edition)
Ch. 12 - A cube of oak wood with very smooth faces normally...Ch. 12 - A rubber hose is attached to a funnel, and the...Ch. 12 - Comparing Example 12.1 (Section 12.1) and Example...Ch. 12 - Prob. Q12.4DQCh. 12 - You have probably noticed that the lower the tire...Ch. 12 - In hot-air ballooning, a large balloon is filled...Ch. 12 - In describing the size of a large ship, one uses...Ch. 12 - You drop a solid sphere of aluminum in a bucket of...Ch. 12 - A rigid, lighter-than-air dirigible filled with...Ch. 12 - Which has a greater buoyant force on it: a 25-cm3...
Ch. 12 - The purity of gold can be tested by weighing it in...Ch. 12 - During the Great Mississippi Flood of 1993, the...Ch. 12 - A cargo ship travels from the Atlantic Ocean (salt...Ch. 12 - You push a piece of wood under the surface of a...Ch. 12 - An old question is Which weighs more, a pound of...Ch. 12 - Suppose the door of a room makes an airtight but...Ch. 12 - At a certain depth in an incompressible liquid,...Ch. 12 - A piece of iron is glued to the top of a block of...Ch. 12 - You take an empty glass jar and push it into a...Ch. 12 - You are floating in a canoe in the middle of a...Ch. 12 - You are floating in a canoe in the middle of a...Ch. 12 - Two identical buckets are filled to the brim with...Ch. 12 - An ice cube floats in a glass of water. When the...Ch. 12 - A helium-filled balloon is tied to a light string...Ch. 12 - If the velocity at each point in space in...Ch. 12 - In a store-window vacuum cleaner display, a...Ch. 12 - A tornado consists of a rapidly whirling air...Ch. 12 - Airports at high elevations have longer runways...Ch. 12 - When a smooth-flowing stream of water comes out of...Ch. 12 - Prob. Q12.30DQCh. 12 - Prob. 12.1ECh. 12 - A cube 5.0 cm on each side is made of a metal...Ch. 12 - Prob. 12.3ECh. 12 - Gold Brick. You win the lottery and decide to...Ch. 12 - A uniform lead sphere and a uniform aluminum...Ch. 12 - Prob. 12.6ECh. 12 - A hollow cylindrical copper pipe is 1.50 m long...Ch. 12 - Prob. 12.8ECh. 12 - Prob. 12.9ECh. 12 - BIO (a) Calculate the difference in blood pressure...Ch. 12 - BIO In intravenous feeding, a needle is inserted...Ch. 12 - A barrel contains a 0.120-m layer of oil floating...Ch. 12 - BIO Standing on Your Head. (a) What is the...Ch. 12 - You are designing a diving bell to withstand the...Ch. 12 - BIO Ear Damage from Diving. If the force on the...Ch. 12 - The liquid in the open-tube manometer in Fig....Ch. 12 - BIO There is a maximum depth at which a diver can...Ch. 12 - BIO The lower end of a long plastic straw is...Ch. 12 - An electrical short cuts off all power to a...Ch. 12 - A tall cylinder with a cross-sectional area 12.0...Ch. 12 - A cylindrical disk of wood weighing 45.0 N and...Ch. 12 - A closed container is partially filled with water....Ch. 12 - Hydraulic Lift I. For the hydraulic lift shown in...Ch. 12 - Hydraulic Lift II. The piston of a hydraulic...Ch. 12 - Exploring Venus. The surface pressure on Venus is...Ch. 12 - A rock has mass 1.80 kg. When the rock is...Ch. 12 - A 950-kg cylindrical can buoy floats vertically in...Ch. 12 - A slab of ice floats on a freshwater lake. What...Ch. 12 - An ore sample weighs 17.50 N in air. When the...Ch. 12 - You are preparing some apparatus for a visit to a...Ch. 12 - A rock with density 1200 kg/m3 is suspended from...Ch. 12 - A hollow plastic sphere is held below the surface...Ch. 12 - A cubical block of wood, 10.0 cm on a side, floats...Ch. 12 - A solid aluminum ingot weighs 89 N in air. (a)...Ch. 12 - A rock is suspended by a light string. When the...Ch. 12 - Water runs into a fountain, filling all the pipes,...Ch. 12 - A shower head has 20 circular openings, each with...Ch. 12 - Water is flowing in a pipe with a varying...Ch. 12 - Water is flowing in a pipe with a circular cross...Ch. 12 - Home Repair. You need to extend a...Ch. 12 - A sealed tank containing seawater to a height of...Ch. 12 - Prob. 12.42ECh. 12 - What gauge pressure is required in the city water...Ch. 12 - A small circular hole 6.00 mm in diameter is cut...Ch. 12 - At a certain point in a horizontal pipeline, the...Ch. 12 - At one point in a pipeline the waters speed is...Ch. 12 - A golf course sprinkler system discharges water...Ch. 12 - A soft drink (mostly water) flows in a pipe at a...Ch. 12 - Prob. 12.49ECh. 12 - A pressure difference of 6.00 104 Pa is required...Ch. 12 - In a lecture demonstration, a professor pulls...Ch. 12 - CP The deepest point known in any of the earths...Ch. 12 - CALC A swimming pool is 5.0 m long, 4.0 m wide,...Ch. 12 - BIO Fish Navigation. (a) As you can tell by...Ch. 12 - CP CALC The upper edge of a gate in a dam runs...Ch. 12 - Ballooning on Mars. It has been proposed that we...Ch. 12 - A 0.180-kg cube of ice (frozen water) is floating...Ch. 12 - A narrow. U-shaped glass tube with open ends is...Ch. 12 - A U-shaped tube open to the air at both ends...Ch. 12 - CALC The Great Molasses Flood. On the afternoon of...Ch. 12 - A large, 40.0-kg cubical block of wood with...Ch. 12 - A hot-air balloon has a volume of 2200 m3. The...Ch. 12 - Prob. 12.63PCh. 12 - A single ice cube with mass 16.4 g floats in a...Ch. 12 - Advertisements for a certain small car claim that...Ch. 12 - A piece of wood is 0.600 m long, 0.250 in wide,...Ch. 12 - The densities of air, helium, and hydrogen (at =...Ch. 12 - When an open-faced boat has a mass of 5750 kg,...Ch. 12 - Prob. 12.69PCh. 12 - In seawater, a life preserver with a volume of...Ch. 12 - CALC A closed and elevated vertical cylindrical...Ch. 12 - Prob. 12.72PCh. 12 - A plastic ball has radius 12.0 cm and floats in...Ch. 12 - Assume that crude oil from a supertanker has...Ch. 12 - Prob. 12.75PCh. 12 - A barge is in a rectangular lock on a freshwater...Ch. 12 - CP Water stands at a depth H in a large, open tank...Ch. 12 - Your uncle is in the below-deck galley of his boat...Ch. 12 - Prob. 12.79PCh. 12 - A cylindrical bucket, open at the top, is 25.0 cm...Ch. 12 - Prob. 12.81PCh. 12 - Prob. 12.82PCh. 12 - Two very large open tanks A and F (Fig. P12.83)...Ch. 12 - A liquid flowing from a vertical pipe has a...Ch. 12 - DATA The density values in Table 12.1 are listed...Ch. 12 - DATA You have a bucket containing; in unknown...Ch. 12 - DATA The Environmental Protection Agency is...Ch. 12 - A siphon (Fig. P12.88) is a convenient device for...Ch. 12 - For the situation shown, the tissues in the...Ch. 12 - The maximum force the muscles of the diaphragm can...Ch. 12 - How does the force the diaphragm experiences due...Ch. 12 - If the elephant were to snorkel in salt water,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
7 A film contains a single thin slit of width a When monochromatic light passes through this slit, the first tw...
College Physics (10th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
As shown below, if M=6.0kg, what is the tension in the connecting string? The pulley and all surfaces are frict...
University Physics Volume 1
Two vectors A and B have the same magnitude A and are at right angles. Find the magnitudes of (a) A + 2B and (b...
Essential University Physics (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A backyard swimming pool with a circular base of diameter 6.00 m is filled to depth 1.50 m. (a) Find the absolute pressure at the bottom of the pool. (b) Two persons with combined mass 150 kg enter the pool and float quietly there. No water overflows. Find the pressure increase at the bottom of the pool after they enter the pool and float.arrow_forwardThe human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of mm of H2O because body fluids, including the cerebrospinal fluid, typically have nearly the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap. A hollow tube is inserted into the spinal column, and the height lo which the fluid rises is observed, as shown in Figure P9.83. If the fluid ruses to a height of 160. mm, we write its gauge pressure as 160. mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Sometimes it is necessary to determine whether an accident victim has suffered a crushed vertebra that is blocking the flow of cerebrospinal fluid in the spinal column. In other cases, a physician may suspect that a tumor or other growth is blocking the spinal column and inhibiting the flow of cerebrospinal fluid. Such conditions ran be investigated by means of the Queckensted test. In this procedure, the veins in the patients neck are compressed lo make the blood pressure rise in the brain. The increase in pressure in the blood vessels is transmitted to the cerebrospinal fluid. What should be the normal effect on the height of the fluid in the spinal tap? (c) Suppose compressing the veins had no effect on the level of the fluid. What might account for this phenomenon?arrow_forwardWater flows through a fire hose of diameter 6.35 cm at a rate of 0.0120 m3/s. The fire hose ends in a nozzle of inner diameter 2.20 cm. What is the speed with which the water exits the nozzle?arrow_forward
- You are applying for a position with a sea rescue unit and are taking the qualifying exam. One question on the exam is about the use of a diving bell. The diving bell is in the shape of a cylinder with a vertical length of L = 2.50 m. It is closed at the upper circular end and open at the lower circular end. The hell is lowered from air into seawater ( = 1.025 g/cm3) and kept in its upright orientation as it is lowered. The air in the bell is initially at temperature Ti = 20.0C. The bell, with two humans inside, is lowered to a depth (measured to the bottom of the bell) of 27.0 fathoms, or h = 49.4 m. At this depth the water temperature is Tf = 4.0C, and the bell is in thermal equilibrium with the water. The exam question asks you to compare two situations: (i) No additional gas is added to the interior of the bell as it is submerged. Therefore, water enters the open bottom of the bell and the volume of the enclosed air decreases. (ii) The bell is fitted with pressurized air tanks, which deliver high-pressure air into the interior of the bell to keep the level of water at the bottom edge of the bell. This choice requires money and effort to attach the tanks. The exam question asks: Which scenario is better?arrow_forwardAn airplane is cruising al altitude 10 km. The pressure outside the craft is 0.287 atm; within the passenger compartment, the pressure is 1.00 atm and the temperature is 20C. A small leak occurs in one of the window seals in the passenger compartment. Model the air as an ideal fluid to estimate the speed of the airstream flowing through the leak.arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forward
- A manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forwardA spherical submersible 2.00 m in radius, armed with multiple cameras, descends under water in a region of the Atlantic Ocean known for shipwrecks and finds its first shipwreck at a depth of 1.75 103 m. Seawater has density 1.03 103 kg/m3, and the air pressure at the oceans surface is 1.013 105 Pa. a. What is the absolute pressure at the depth of the shipwreck? b. What is the buoyant force on the submersible at the depth of the shipwreck?arrow_forwardAn airplane is cruising at altitude 10 km. The pressure outside the craft is 0.287 atm; within the passenger compartment, the pressure is 1.00 atm and the temperature is 20C. A small leak occurs in one of the window seals in the passenger compartment. Model the air as an ideal fluid to estimate the speed of the airstream flowing through the leak.arrow_forward
- Small spheres of diameter 1.00 mm fall through 20C water with a terminal speed of 1.10 cm/s. Calculate the density of the spheres.arrow_forwardThe average human has a density of 945 kg/m3 after in haling and 1 020 kg/m3 after exhaling. (a) Without making any swimming movements, what percentage of the human body would be above the surface in the Dead Sea (a body of water with a density of about 1 230 kg/m3) in each of these cases? (b) Given that bone and muscle are denser than fat, what physical characteristics differentiate sinkers (those who tend to sink in water) from floaters (those who readily float)?arrow_forwardYou observe two helium balloons floating next to each other at the ends of strings secured to a table. The facing surfaces of the balloons are separated by 12 cm. You blow through the small space between the balloons. What happens to the balloons? (a) They move toward each other. (b) They move away from each other. (c) They are unaffected.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
How to Calculate Density of Liquids - With Examples; Author: cleanairfilms;https://www.youtube.com/watch?v=DVQMWihs3wQ;License: Standard YouTube License, CC-BY