
University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.75P
(a)
To determine
The fraction of the block’s volume above the surface of the liquid.
(b)
To determine
The height of the block in the water when the water surface is at the top of the block.
(c)
To determine
The height of the iron block in water,when the liquid is mercury.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Find the current in 5.00 and 7.00 Ω resistors. Please explain all reasoning
Find the amplitude, wavelength, period, and the speed of the wave.
A long solenoid of length 6.70 × 10-2 m and cross-sectional area 5.0 × 10-5 m² contains
6500 turns per meter of length. Determine the emf induced in the solenoid when the
current in the solenoid changes from 0 to 1.5 A during the time interval from 0 to 0.20 s.
Number
Units
Chapter 12 Solutions
University Physics (14th Edition)
Ch. 12 - A cube of oak wood with very smooth faces normally...Ch. 12 - A rubber hose is attached to a funnel, and the...Ch. 12 - Comparing Example 12.1 (Section 12.1) and Example...Ch. 12 - Prob. Q12.4DQCh. 12 - You have probably noticed that the lower the tire...Ch. 12 - In hot-air ballooning, a large balloon is filled...Ch. 12 - In describing the size of a large ship, one uses...Ch. 12 - You drop a solid sphere of aluminum in a bucket of...Ch. 12 - A rigid, lighter-than-air dirigible filled with...Ch. 12 - Which has a greater buoyant force on it: a 25-cm3...
Ch. 12 - The purity of gold can be tested by weighing it in...Ch. 12 - During the Great Mississippi Flood of 1993, the...Ch. 12 - A cargo ship travels from the Atlantic Ocean (salt...Ch. 12 - You push a piece of wood under the surface of a...Ch. 12 - An old question is Which weighs more, a pound of...Ch. 12 - Suppose the door of a room makes an airtight but...Ch. 12 - At a certain depth in an incompressible liquid,...Ch. 12 - A piece of iron is glued to the top of a block of...Ch. 12 - You take an empty glass jar and push it into a...Ch. 12 - You are floating in a canoe in the middle of a...Ch. 12 - You are floating in a canoe in the middle of a...Ch. 12 - Two identical buckets are filled to the brim with...Ch. 12 - An ice cube floats in a glass of water. When the...Ch. 12 - A helium-filled balloon is tied to a light string...Ch. 12 - If the velocity at each point in space in...Ch. 12 - In a store-window vacuum cleaner display, a...Ch. 12 - A tornado consists of a rapidly whirling air...Ch. 12 - Airports at high elevations have longer runways...Ch. 12 - When a smooth-flowing stream of water comes out of...Ch. 12 - Prob. Q12.30DQCh. 12 - Prob. 12.1ECh. 12 - A cube 5.0 cm on each side is made of a metal...Ch. 12 - Prob. 12.3ECh. 12 - Gold Brick. You win the lottery and decide to...Ch. 12 - A uniform lead sphere and a uniform aluminum...Ch. 12 - Prob. 12.6ECh. 12 - A hollow cylindrical copper pipe is 1.50 m long...Ch. 12 - Prob. 12.8ECh. 12 - Prob. 12.9ECh. 12 - BIO (a) Calculate the difference in blood pressure...Ch. 12 - BIO In intravenous feeding, a needle is inserted...Ch. 12 - A barrel contains a 0.120-m layer of oil floating...Ch. 12 - BIO Standing on Your Head. (a) What is the...Ch. 12 - You are designing a diving bell to withstand the...Ch. 12 - BIO Ear Damage from Diving. If the force on the...Ch. 12 - The liquid in the open-tube manometer in Fig....Ch. 12 - BIO There is a maximum depth at which a diver can...Ch. 12 - BIO The lower end of a long plastic straw is...Ch. 12 - An electrical short cuts off all power to a...Ch. 12 - A tall cylinder with a cross-sectional area 12.0...Ch. 12 - A cylindrical disk of wood weighing 45.0 N and...Ch. 12 - A closed container is partially filled with water....Ch. 12 - Hydraulic Lift I. For the hydraulic lift shown in...Ch. 12 - Hydraulic Lift II. The piston of a hydraulic...Ch. 12 - Exploring Venus. The surface pressure on Venus is...Ch. 12 - A rock has mass 1.80 kg. When the rock is...Ch. 12 - A 950-kg cylindrical can buoy floats vertically in...Ch. 12 - A slab of ice floats on a freshwater lake. What...Ch. 12 - An ore sample weighs 17.50 N in air. When the...Ch. 12 - You are preparing some apparatus for a visit to a...Ch. 12 - A rock with density 1200 kg/m3 is suspended from...Ch. 12 - A hollow plastic sphere is held below the surface...Ch. 12 - A cubical block of wood, 10.0 cm on a side, floats...Ch. 12 - A solid aluminum ingot weighs 89 N in air. (a)...Ch. 12 - A rock is suspended by a light string. When the...Ch. 12 - Water runs into a fountain, filling all the pipes,...Ch. 12 - A shower head has 20 circular openings, each with...Ch. 12 - Water is flowing in a pipe with a varying...Ch. 12 - Water is flowing in a pipe with a circular cross...Ch. 12 - Home Repair. You need to extend a...Ch. 12 - A sealed tank containing seawater to a height of...Ch. 12 - Prob. 12.42ECh. 12 - What gauge pressure is required in the city water...Ch. 12 - A small circular hole 6.00 mm in diameter is cut...Ch. 12 - At a certain point in a horizontal pipeline, the...Ch. 12 - At one point in a pipeline the waters speed is...Ch. 12 - A golf course sprinkler system discharges water...Ch. 12 - A soft drink (mostly water) flows in a pipe at a...Ch. 12 - Prob. 12.49ECh. 12 - A pressure difference of 6.00 104 Pa is required...Ch. 12 - In a lecture demonstration, a professor pulls...Ch. 12 - CP The deepest point known in any of the earths...Ch. 12 - CALC A swimming pool is 5.0 m long, 4.0 m wide,...Ch. 12 - BIO Fish Navigation. (a) As you can tell by...Ch. 12 - CP CALC The upper edge of a gate in a dam runs...Ch. 12 - Ballooning on Mars. It has been proposed that we...Ch. 12 - A 0.180-kg cube of ice (frozen water) is floating...Ch. 12 - A narrow. U-shaped glass tube with open ends is...Ch. 12 - A U-shaped tube open to the air at both ends...Ch. 12 - CALC The Great Molasses Flood. On the afternoon of...Ch. 12 - A large, 40.0-kg cubical block of wood with...Ch. 12 - A hot-air balloon has a volume of 2200 m3. The...Ch. 12 - Prob. 12.63PCh. 12 - A single ice cube with mass 16.4 g floats in a...Ch. 12 - Advertisements for a certain small car claim that...Ch. 12 - A piece of wood is 0.600 m long, 0.250 in wide,...Ch. 12 - The densities of air, helium, and hydrogen (at =...Ch. 12 - When an open-faced boat has a mass of 5750 kg,...Ch. 12 - Prob. 12.69PCh. 12 - In seawater, a life preserver with a volume of...Ch. 12 - CALC A closed and elevated vertical cylindrical...Ch. 12 - Prob. 12.72PCh. 12 - A plastic ball has radius 12.0 cm and floats in...Ch. 12 - Assume that crude oil from a supertanker has...Ch. 12 - Prob. 12.75PCh. 12 - A barge is in a rectangular lock on a freshwater...Ch. 12 - CP Water stands at a depth H in a large, open tank...Ch. 12 - Your uncle is in the below-deck galley of his boat...Ch. 12 - Prob. 12.79PCh. 12 - A cylindrical bucket, open at the top, is 25.0 cm...Ch. 12 - Prob. 12.81PCh. 12 - Prob. 12.82PCh. 12 - Two very large open tanks A and F (Fig. P12.83)...Ch. 12 - A liquid flowing from a vertical pipe has a...Ch. 12 - DATA The density values in Table 12.1 are listed...Ch. 12 - DATA You have a bucket containing; in unknown...Ch. 12 - DATA The Environmental Protection Agency is...Ch. 12 - A siphon (Fig. P12.88) is a convenient device for...Ch. 12 - For the situation shown, the tissues in the...Ch. 12 - The maximum force the muscles of the diaphragm can...Ch. 12 - How does the force the diaphragm experiences due...Ch. 12 - If the elephant were to snorkel in salt water,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A coat hanger of mass m = 0.255 kg oscillates on a peg as a physical pendulum as shown in the figure below. The distance from the pivot to the center of mass of the coat hanger is d = 18.0 cm and the period of the motion is T = 1.37 s. Find the moment of inertia of the coat hanger about the pivot.arrow_forwardReview Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 3.9 m/s perpendicular to a 0.49-T magnetic field. The resistance of th rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.4 m. A 1.1-Q resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potentia energy that occurs in a time of 0.26 s. (c) Find the electrical energy dissipated in the resistor in 0.26 s.arrow_forwardA camera lens used for taking close-up photographs has a focal length of 21.5 mm. The farthest it can be placed from the film is 34.0 mm. (a) What is the closest object (in mm) that can be photographed? 58.5 mm (b) What is the magnification of this closest object? 0.581 × ×arrow_forward
- Given two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.) Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?arrow_forward(a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three decimal places.) 0.42 × cm (b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification? 15 × cmarrow_forwardIn a LASIK vision correction, the power of a patient's eye is increased by 3.10 D. Assuming this produces normal close vision, what was the patient's near point in m before the procedure? (The power for normal close vision is 54.0 D, and the lens-to-retina distance is 2.00 cm.) 0.98 x marrow_forward
- Don't use ai to answer I will report you answerarrow_forwardA shopper standing 2.00 m from a convex security mirror sees his image with a magnification of 0.200. (Explicitly show on paper how you follow the steps in the Problem-Solving Strategy for mirrors found on page 1020. Your instructor may ask you to turn in this work.) (a) Where is his image (in m)? (Use the correct sign.) -0.4 m in front of the mirror ▾ (b) What is the focal length (in m) of the mirror? -0.5 m (c) What is its radius of curvature (in m)? -1.0 marrow_forwardAn amoeba is 0.309 cm away from the 0.304 cm focal length objective lens of a microscope.arrow_forward
- Two resistors of resistances R1 and R2, with R2>R1, are connected to a voltage source with voltage V0. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10Is. Let r be the ratio R1/R2. Find r. I know you have to find the equations for V for both situations and relate them, I'm just struggling to do so. Please explain all steps, thank you.arrow_forwardBheem and Ram, jump off either side of a bridge while holding opposite ends of a rope and swing back and forth under the bridge to save a child while avoiding a fire. Looking at the swing of just Bheem, we can approximate him as a simple pendulum with a period of motion of 5.59 s. How long is the pendulum ? When Bheem swings, he goes a full distance, from side to side, of 10.2 m. What is his maximum velocity? What is his maximum acceleration?arrow_forwardThe position of a 0.300 kg object attached to a spring is described by x=0.271 m ⋅ cos(0.512π⋅rad/s ⋅t) (Assume t is in seconds.) Find the amplitude of the motion. Find the spring constant. Find the position of the object at t = 0.324 s. Find the object's velocity at t = 0.324 s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning