Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259877827
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 90P
To determine
Temperature and Mach number at duct exit.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Water vapour at 100 kPa and 150 is contained in a rigid vessel. At what
temperature will the vapour stat to condense when the container is cooled slowly? How
much heat will have to be removed per kilogram in this cooling process?
Ans:95.68C, -81.4kj/kg
Calculate the final pressure and temperature inside the cylindrical tank for air at 40˚C and 200 kPaa that was compressed to a quarter of its volume under isothermal process.
In a conservation of mass problem, what can be concluded about the time rate of change of mass in the control volume if the net rate of mass flow through the control surface is positive?
Chapter 12 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 72EPCh. 12 - Prob. 73P
Ch. 12 - Prob. 74PCh. 12 - Prob. 75PCh. 12 - For an ideal gas flowing through a normal shock,...Ch. 12 - Prob. 77CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 80CPCh. 12 - Prob. 81CPCh. 12 - Prob. 82CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 84EPCh. 12 - Prob. 85PCh. 12 - Prob. 86PCh. 12 - Prob. 87EPCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90PCh. 12 - Prob. 91PCh. 12 - Prob. 93CPCh. 12 - Prob. 94CPCh. 12 - Prob. 95CPCh. 12 - Prob. 96CPCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101PCh. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Prob. 105PCh. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 110PCh. 12 - Prob. 112PCh. 12 - Prob. 113PCh. 12 - Prob. 114PCh. 12 - Prob. 115PCh. 12 - Prob. 116EPCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - Prob. 123PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 125PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 127PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - Prob. 131PCh. 12 - Prob. 132PCh. 12 - Prob. 133PCh. 12 - Prob. 134PCh. 12 - Prob. 135PCh. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 145PCh. 12 - Prob. 148PCh. 12 - Prob. 149PCh. 12 - Prob. 150PCh. 12 - Prob. 151PCh. 12 - Prob. 153PCh. 12 - Prob. 154PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Reconsider Prob Using appropriate software, investigate the effect of the exit pressure of steam on the exit temperature after throttling. Let the exit pressure vary from 6 to 1 MPa. Plot the exit temperature of steam against the exit pressure, and discuss the results.arrow_forwardWhat is the specific volume and enthalpy of the steam at T = 350°C and P = 1400kPa? Answer: 0.20029m³/kg, 3150.1 kJ/kgarrow_forwardThis hermodynamics statement is false to say that a basic way to reduce the mean velocity of water flowing through a pipe for a given mass flow rate and density is to decrease the inside diameter of the pipe? Why is this statement false? Please explain. Thank you!arrow_forward
- What is the difference between specific internal energy and specific enthalpy in first law of Thermodyanamics and when should i use which? From what i understand so far for constant pressure process, we use q-w=h2-h1 and constant volume process, we use q-w = u2-u1. But this isnt the answer i am looking for.arrow_forwardi need the answer quicklyarrow_forwardCalculate delta S when 1 mole of supercooled water at –10oC and 100 kPa is converted into ice at -10oC and 100 kPa. The molar heat capacity at constant pressure (Cm,P) of ice is 37.7 J K-1 mol- 1, and that of supercooled water is 76.1 J K-1 mol-1. The enthalpy of freezing of water is -6004 J mol-1. final answer: -20.54 J K-1arrow_forward
- Five hundred kilograms per hour of steam drives a turbine. The steamenters the turbine at 44 atm and 450C at a linear velocity of 60 m/sand leaves at a point 5 m below the turbine inlet at atmosphericpressure and a velocity of 360 m/s. The turbine delivers shaft work at arate of 70 kW, and the heat loss from the turbine is estimated to be 104kcal/h. Calculate the specific enthalpy change associated with theprocessarrow_forwardThe pressure of steam at a temperature of 500°C and a density of 8.606593 kg/m3 in kPa is 7000 6000 O 4000 3000arrow_forwardSteam at 500kPa and a quality of 90 percent occupied a rigid vessel of volume 0.3m2. Calculate the mass, internal energy, and enthalpy of the steam.arrow_forward
- An ideal gas flows in a pipe at 37°C. The density of the gas is 1.9 kg/m3 and its molar mass is 44 kg/kmol. The pressure of the gas is (a) 13 kPa (b) 79 kPa (c) 111 kPa (d ) 490 kPa (e) 4900 kPaarrow_forwardBenzene at 20 0C is pumped from one storage tank to a reactor (density=878 kg/ m3 ). Volumetric flow rate of benzene is 9.5x 10-4 m3 /s. The difference in the elevations of the two unit is 40m. The tank whichserves as a source is open to the atmosphere while the tank which receives the benzene has a pressure of P2 kPa abs in the vapor space above the benzene. 1‐in, schedule‐40 steel pipe and 2‐in Sch‐40 steel pipe isused in suction and discharge line respectively. Total friction loss of the system given as 135 J/kg . Pressure gauges in the pipeline at the inlet and outlet of the pump read (P3) 34.5kPa and (P4) 1051.6kPa, respectively. Efficiency of pump is %75 a) Calculate the power of pump (kW). (Fluid Mechanics Question) (Please answer it detailed and step by step)arrow_forwardIdentify the state of the fluid: R134a at 400kPa, with a specific volume of 0.0223m3/kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License