PRINCIPLES OF MODERN CHEMISTRY-OWLV2
8th Edition
ISBN: 9781305271609
Author: OXTOBY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A sample of sucrose, C12H22O11, is contaminated by sodium chloride. When the contaminated sample is burned in a bomb calorimeter, sodium chloride does not burn. What is the percentage of sucrose in the sample if a temperature increase of 1.67C is observed when 3.000 g of the sample are burned in the calorimeter? Sucrose gives off 5.64103kJ/mol when burned. The heat capacity of the calorimeter and water is 22.51 kJ/C.arrow_forwardThe enthalpy of combustion of diamond is -395.4 kJ/mol. C s, dia O2 g CO2 g Determine the fH of C s, dia.arrow_forwardA 21.3-mL sample of 0.977 M NaOH is mixed with 29.5 mL of 0.918 M HCl in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 19.6C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, the specific heat of all solutions is the same as that of water, and volumes are additive.arrow_forward
- In the 1880s, Frederick Trouton noted that the enthalpy of vaporization of 1 mol pure liquid is approximately 88 times the boiling point, Tb, of the liquid on the Kelvin scale. This relationship is called Troutons rule and is represented by the thermochemical equation liquid gas H = 88 Tb, joules Combined with an empirical formula from chemical analysis, Troutons rule can be used to find the molecular formula of a compound, as illustrated here. A compound that contains only carbon and hydrogen is 85.6% C and 14.4% H. Its enthalpy of vaporization is 389 J/g, and it boils at a temperature of 322 K. (a) What is the empirical formula of this compound? (b) Use Troutons rule to calculate the approximate enthalpy or vaporization or one mole of the compound. Combine the enthalpy of vaporization per mole with that same quantity per gram to obtain an approximate molar mass of the compound. (c) Use the results of parts (a) and (b) to find the molecular formula of this compound. Remember that the molecular mass must be exactly a whole-number multiple of the empirical formula mass, so considerable rounding may be needed.arrow_forwardCalculate the standard enthalpy of combustion for benzene, C6H6. C6H6() + 15/2 O2(g) 6 CO2(g) + 3 H2O() rH = ? The enthalpy of formation of benzene is known [rH[C6H6()] = +49.0 kJ/mol], and other values needed can be found in Appendix L.arrow_forwardThe standard enthalpies of formation of KNO3(s) and K2S(s) are 494.6 kJ/mol and 376.6 kJ/mol, respectively. a. Determine the standard enthalpy change for the reaction of black powder according to the balanced equation on the previous page. b. Determine the enthalpy change that occurs when 1.00 g of black powder decomposes according to the stoichiometry of the balanced equation above. (Even though black powder is a mixture, assume that we can designate 1 mol of black powder as consisting of exactly 2 mol of KNO3, 3 mol of C, and 1 mol of S.)arrow_forward
- A 50-mL solution of a dilute AgNO3 solution is added to 100 mL of a base solution in a coffee-cup calorimeter. As Ag2O(s) precipitates, the temperature of the solution increases from 23.78 C to 25.19 C. Assuming that the mixture has the same specific heat as water and a mass of 150 g, calculate the heat q. Is the precipitation reaction exothermic or endothermic?arrow_forwardIn a constant-volume calorimeter, 35.0g of H2cools from 75.3C to25.0C. Calculate w, q, U, and H for the process.arrow_forwardA piece of lead of mass 121.6 g was heated by an electrical coil. From the resistance of the coil, the current, and the Time the current flowed, it was calculated that 235 J of heat was added to the lead. The temperature of the lead rose from 20.4C to 35.5C. What is the specific heat of the lead?arrow_forward
- Nitric acid, HNO3, can be prepared by the following sequence of reactions: 4NH3(g)+5O2(g)4NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(l)+NO(g) How much heat is evolved when 1 mol of NH3(g) is converted to HNO3(l)? Assume standard states at 25 C.arrow_forwardA sample of benzene, C6H6, weighing 3.51 g was burned in an excess of oxygen in a bomb calorimeter. The temperature of the calorimeter rose from 25.00C to 37.18C. If the heat capacity of the calorimeter and contents was 12.05 kJ/C, what is the value of q for burning 1.00 mol of benzene at constant volume and 25.00C? The reaction is C6H6(l)+152O2(g)6CO2(g)+3H2O(l) Is q equal to U or H?arrow_forwardA student performing a calorimetry experiment combined 100.0 ml. of 0.50 M HCI and 100.0 ml. of 0.50 M NaOH in a StyrofoamTM cup calorimeter. Both solutions were initially at 20.0 C, but when the two were mixed, the temperature rose to 23.2 C (a) Suppose the experiment is repeated in the same calorimeter but this time using 200 mL of 0.50 M HCl and 200.0 ml of 0.50 M NaOH. WIII the AT observed be greater than, less than, or equal to that in the first experiment, and why? (b) Suppose that the experiment is repeated once again in the same calorimeter, this time using 100 mL of 1.00 M HCI and 100.0 ml. of 1.00 M NaOH. Will the T observed be greater than, less than, or equal to that in the first experiment, and why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY