BIO Waves on vocal cords. In the larynx, sound is produced by the vibration of the vocal cords. The diagram in Figure 12.44 is a cross section of the vocal tract at one instant in time. Air flows upward (in the +z direction) through the vocal tract, causing a transverse wave to propagate vertically upward along the surface of the vocal cords. In a typical adult male, the thickness of the vocal cords in the direction of airflow is d = 2.0 mm. High-speed photography shows that for a frequency of vibration of f = 125 Hz, the wave along the surface of the vocal cords travels upward at a speed of u = 375 cm/s. Take t to be time, z to be displacement in the + z direction, and λ to be wavelength. Figure 12.44 Problems 72–74. 73. Which of the following is a possible mathematical description of the wave in Problem 15.72? A. A sin [2п f ( t + z / u )] B. A sin [2п f ( t − z / u )] C. A sin (2п ft ) cos (2п z /λ) D. A sin (2п ft ) sin(2п z /λ)
BIO Waves on vocal cords. In the larynx, sound is produced by the vibration of the vocal cords. The diagram in Figure 12.44 is a cross section of the vocal tract at one instant in time. Air flows upward (in the +z direction) through the vocal tract, causing a transverse wave to propagate vertically upward along the surface of the vocal cords. In a typical adult male, the thickness of the vocal cords in the direction of airflow is d = 2.0 mm. High-speed photography shows that for a frequency of vibration of f = 125 Hz, the wave along the surface of the vocal cords travels upward at a speed of u = 375 cm/s. Take t to be time, z to be displacement in the + z direction, and λ to be wavelength. Figure 12.44 Problems 72–74. 73. Which of the following is a possible mathematical description of the wave in Problem 15.72? A. A sin [2п f ( t + z / u )] B. A sin [2п f ( t − z / u )] C. A sin (2п ft ) cos (2п z /λ) D. A sin (2п ft ) sin(2п z /λ)
BIO Waves on vocal cords. In the larynx, sound is produced by the vibration of the vocal cords. The diagram in Figure 12.44 is a cross section of the vocal tract at one instant in time. Air flows upward (in the +z direction) through the vocal tract, causing a transverse wave to propagate vertically upward along the surface of the vocal cords. In a typical adult male, the thickness of the vocal cords in the direction of airflow is d = 2.0 mm. High-speed photography shows that for a frequency of vibration of f = 125 Hz, the wave along the surface of the vocal cords travels upward at a speed of u = 375 cm/s. Take t to be time, z to be displacement in the + z direction, and λ to be wavelength.
Figure 12.44 Problems 72–74.
73. Which of the following is a possible mathematical description of the wave in Problem 15.72?
suggest a reason ultrasound cleaning is better than cleaning by hand?
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
Chapter 12 Solutions
Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY