A Near Miss! In the early morning hours of June 14, 2002, the Earth had a remarkably close encounter with an asteroid the size of a small city. The previously unknown asteroid, now designated 2002 MN, remained undetected until three days after it had passed the Earth. At its closest approach, the asteroid was 73,600 miles from the center of the Earth—about a third of the distance to the Moon. (a) Find the speed of the asteroid at closest approach, assuming its speed at infinite distance to be zero and considering only its interaction with the Earth. (b) Observations indicate the asteroid to have a diameter of about 0.730 km. Estimate the kinetic energy of the asteroid at closest approach, assuming it has an average density of 3.33 g/cm 3 . (For comparison, a 1-megaton nuclear weapon releases about 4.2 × 10 15 J of energy.)
A Near Miss! In the early morning hours of June 14, 2002, the Earth had a remarkably close encounter with an asteroid the size of a small city. The previously unknown asteroid, now designated 2002 MN, remained undetected until three days after it had passed the Earth. At its closest approach, the asteroid was 73,600 miles from the center of the Earth—about a third of the distance to the Moon. (a) Find the speed of the asteroid at closest approach, assuming its speed at infinite distance to be zero and considering only its interaction with the Earth. (b) Observations indicate the asteroid to have a diameter of about 0.730 km. Estimate the kinetic energy of the asteroid at closest approach, assuming it has an average density of 3.33 g/cm 3 . (For comparison, a 1-megaton nuclear weapon releases about 4.2 × 10 15 J of energy.)
A Near Miss! In the early morning hours of June 14, 2002, the Earth had a remarkably close encounter with an asteroid the size of a small city. The previously unknown asteroid, now designated 2002 MN, remained undetected until three days after it had passed the Earth. At its closest approach, the asteroid was 73,600 miles from the center of the Earth—about a third of the distance to the Moon. (a) Find the speed of the asteroid at closest approach, assuming its speed at infinite distance to be zero and considering only its interaction with the Earth. (b) Observations indicate the asteroid to have a diameter of about 0.730 km. Estimate the kinetic energy of the asteroid at closest approach, assuming it has an average density of 3.33 g/cm3. (For comparison, a 1-megaton nuclear weapon releases about 4.2 × 1015 J of energy.)
20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie
the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres
are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?
Chapter 12 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.