
Concept explainers
(a)
To Calculate: The frequency that an observer can hear, who is located at rest in due north.
The velocity component does not get affected by blowing wind, so the frequency that can be heard is
Given:
Frequency of whistle
Wind velocity from north
Formula used:
Calculation:
The velocity component of the sound v , reaching the observer will not be affected by the blowing wind.
The frequency that can be heard by the observer is,
Therefore, the frequency that can be heard is
Conclusion:
The velocity component does not affect by blowing wind, so the frequency that can be heard is
(b)
To Calculate: The frequency that an observer can hear, who is located at rest in due south.
The velocity component does not get affected by blowing wind, so the frequency that can be heard is
Given:
Frequency of whistle
Wind velocity from north
Formula used:
Calculation:
There is no Doppler shift and the frequency that can be heard by the observer is,
Therefore, the frequency that can be heard is
Conclusion:
The velocity component does not affect by blowing wind, so the frequency that can be heard is
(c)
To Calculate: The frequency that an observer can hear who is located at rest in due east.
Given:
Frequency of whistle,
Wind velocity from north,
Formula used:
Calculation:
There is no Doppler shift and the frequency that can be heard by the observer is,
Therefore, the frequency that can be heard is
Conclusion:
The velocity component does not affect by blowing wind, so the frequency that can be heard is
(d)
To Calculate: The frequency that an observer can hear who is located at rest is due west of the whistle.
570 Hz.
Given:
Frequency of whistle,
Wind velocity from north,
Formula used:
Calculation:
The frequency that can be heard by the observer is,
Therefore, the frequency that can be heard is
Conclusion:
The frequency that can be heard is
(e)
To Calculate: The frequency that can be heard by cyclist heading north.
Given:
Frequency of whistle,
Wind velocity from north,
Velocity of the cyclist towards North,
Formula used:
Calculation:
The frequency heard by the observer is,
Where,
Substituting the values,
Conclusion:
The frequency that can be heard is
(f)
To Calculate: The frequency that can be heard, when heading towards the whistle.
Given:
Frequency of whistle,
Velocity of the cyclist towards North,
Formula used:
Calculation:
The velocity component of the sound v , which is reaching the observer will be unaffected by the blowing wind.
There is no Doppler shift and the frequency that can be heard by the observer is,
Substituting the values,
Conclusion:
The frequency that can be heard, when heading towards the whistle at a speed of
Chapter 12 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Organic Chemistry (8th Edition)
Campbell Biology (11th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- For items 8-9, refer to the problem below. Find all the currents flowing in every resistor, power dissipation in every resistor and the total power of the circuit shown at the right using... 8. Kirchhoff's Laws (5 pts) 9. Maxwell's Mesh Analysis (5 pts) A 8 V 10 V B + 20 Ω 3Ω 202 wwww C wwww 202 + 50 www 12 Varrow_forward• Nature of Resistance Temperature-Resistance Relationship Ohm's Law, Energy and Power Kirchhoff's Law • Maxwell's Mesh Analysis 1. A coil of copper wire (p = 10.37 2-cmil/ft) has a length of 600 ft. What is the length of an aluminum conductor (p 17 cmil/ft), if its cross-sectional area and resistance are the same as those of the copper coil? (Hint: Look for conversion of inches to mils and square inches to square foot. Include it in your solution.) (1 pt) 2. The copper field winding of an electric machine has a resistance of 46 at temperature of 22°C. What will be its resistance at 75°C? (Use do = 0.00427 /°C for copper) (1 pt) 3. The resistivity of a copper rod 50 ft long and 0.25 inch in diameter is 1.76 μ at 20°C. What is its resistance at - 20°C? (1 pt) 4. When two resistors A and B are connected in series, the total resistance is 36 2. When connected in parallel, the total resistance is 8 Q. What is the ratio of the resistance RA to resistance RB? Assume RA < RB. (1 pt) 5. The…arrow_forward2. Two equally strong individuals, wearing exactly the same shoes decide to do a tug of war. The only difference is individual A is 2.5 meters tall and individual B is 1.5 meter tall. Who is more likely to win the tug of war?arrow_forward
- 6. A car drives at steady speed around a perfectly circular track. (a) The car's acceleration is zero. (b) The net force on the car is zero. (c) Both the acceleration and net force on the car point outward. (d) Both the acceleration and net force on the car point inward. (e) If there is no friction, the acceleration is outward.arrow_forward9. A spring has a force constant of 100 N/m and an unstretched length of 0.07 m. One end is attached to a post that is free to rotate in the center of a smooth. table, as shown in the top view in the figure below. The other end is attached to a 1kg disc moving in uniform circular motion on the table, which stretches the spring by 0.03 m. Friction is negligible. What is the centripetal force on the disc? Top View (a) 0.3 N (b) 3.0 N (c) 10 N (d) 300 N (e) 1000 Narrow_forward4. A child has a ball on the end of a cord, and whirls the ball in a vertical circle. Assuming the speed of the ball is constant (an approximation), when would the tension in the cord be greatest? (a) At the top of the circle. (b) At the bottom of the circle. (c) A little after the bottom of the circle when the ball is climbing. (d) A little before the bottom of the circle when the ball is descending quickly. (e) Nowhere; the cord is pulled the same amount at all points.arrow_forward
- 3. In a rotating vertical cylinder (Rotor-ride) a rider finds herself pressed with her back to the rotating wall. Which is the correct free-body diagram for her? (a) (b) (c) (d) (e)arrow_forward8. A roller coaster rounds the bottom of a circular loop at a nearly constant speed. At this point the net force on the coaster cart is (a) zero. (b) directed upward. (c) directed downward. (d) Cannot tell without knowing the exact speed.arrow_forward5. While driving fast around a sharp right turn, you find yourself pressing against the left car door. What is happening? (a) Centrifugal force is pushing you into the door. (b) The door is exerting a rightward force on you. (c) Both of the above. (d) Neither of the above.arrow_forward
- 7. You are flung sideways when your car travels around a sharp curve because (a) you tend to continue moving in a straight line. (b) there is a centrifugal force acting on you. (c) the car exerts an outward force on you. (d) of gravity.arrow_forward1. A 50-N crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50. A 20-N force is applied to the crate acting to the right. What is the resulting static friction force acting on the crate? (a) 20 N to the right. (b) 20 N to the left. (c) 25 N to the right. (d) 25 N to the left. (e) None of the above; the crate starts to move.arrow_forward3. The problem that shall not be named. m A (a) A block of mass m = 1 kg, sits on an incline that has an angle 0. Find the coefficient of static friction by analyzing the system at imminent motion. (hint: static friction will equal the maximum value) (b) A block of mass m = 1kg made of a different material, slides down an incline that has an angle 0 = 45 degrees. If the coefficient of kinetic friction increases is μ = 0.5 what is the acceleration of the block? karrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





