Concept explainers
(a)
Interpretation: The number of valence electrons that present in Boron should be calculated.
Concept Introduction:
The closer the atomic orbital is to the nucleus, the lower its energy.
Degenerate orbitals have the same energy.
The electronic configuration of an atom explain the atomic orbital occupies by the atoms electrons.
Electron are assigned to orbitals occupied by the atoms electrons.
Electron are assigned to orbitals (atomic or molecular) following the Aufbau principle, the Pauli Exclusion Principle, and valence electron are electron in the outer most shell.
Core electron are electrons in inner shells.
The outer most shell electron is known as the Valence electron.
(b)
Interpretation: The number of valence electrons that present in Nitrogen should be calculated.
Concept Introduction:
- The closer the atomic orbital is to the nucleus, the lower its energy.
- Degenerate orbitals have the same energy.
- The electronic configurations of an atom explain the atomic orbital occupies by the atoms electrons.
- Electrons are assigned to orbitals occupied by the atoms electrons.
- Electron is assigned to orbitals (atomic or molecular) following the Aufbau principle, the Pauli Exclusion Principle, and valence electron are electron in the outer most shell.
- Core electron is electrons in inner shells.
- The outer most shell electron is known as the Valence electron.
(c)
Interpretation: The number of valence electrons that present in Oxygen should be calculated.
Concept Introduction:
- The closer the atomic orbital is to the nucleus, the lower its energy.
- Degenerate orbitals have the same energy.
- The electronic configuration of an atom explains the atomic orbital occupies by the atoms electrons.
- Electrons are assigned to orbitals occupied by the atoms electrons.
- Electrons are assigned to orbitals (atomic or molecular) following the aufbau principle, the Pauli Exclusion Principle, and valence electron are electron in the outer most shell.
- Core electron is electrons in inner shells.
- The outer most shell electron is known as the Valence electron.
(d)
Interpretation: The number of valence electronss that present in Fluorine should be calculated.
Concept Introduction:
The closer the atomic orbital is to the nucleus, the lower its energy.
Degenerate orbitals have the same energy.
The electronic configuration of an atom explains the atomic orbital occupies by the atoms electrons.
Electron is assigned to orbitals occupied by the atoms electrons.
Electrons are assigned to orbitals (atomic or molecular) following the aufbau principle, the Pauli Exclusion Principle, and valence electron are electron in the outer most shell.
Core electrons are electrons in inner shells.
The outer most shell electron is known as the Valence electron.
Trending nowThis is a popular solution!
Chapter 1 Solutions
Organic Chemistry Study Guide and Solutions Manual, Books a la Carte Edition (8th Edition)
- 14.32 What diene and dienophile are needed to prepare each compound by a Diels-Alder reaction? a. b.arrow_forward14.34 Draw all reasonable resonance structures for each species. a. b. Ö :0: C. :0: :0: d. OH e. f. :O:arrow_forward7. The standard reduction potentials for two half-reactions are shown above. Which of the statements listed below will be true for the following reaction taking place under standard conditions? a. E° b. E° c. E° = d. E° e. E° = Al (s) + Cr³+ → Al³+ + Cr (s) 0.93 V, and the reaction is not spontaneous 0.93 V, and the reaction is spontaneous 2.39 V, and the reaction is not spontaneous 2.39 V, and the reaction is not spontaneous 0.93 V, and the reaction is spontaneous Cu2+ + 2e → Cu E° = +0.34 V Zn2+ + 2e → Zn E° = -0.76 V E° = -1.18 V Mn2+ + 2e → Mn 8. Based on the above reduction potential, which of the following reactions will occur spontaneously? a. Mn²+ + Cu → Mn + Cu2+ b. Mn²+ + Zn → Mn + Zn²+ c. Zn2+ + Cu → Zn + Cu²+ d. Zn²+ + Mn → Zn + Mn2+ e. Cu²+ + Zn²+ → Cu + Znarrow_forward
- 14.35 For which compounds can a second resonance structure be drawn? Draw an additional resonance structure and the hybrid for each resonance-stabilized compound. a. OCH3 OCH 3 b. C. d. CH3 NHCH3arrow_forwardpls help on all, inlcude all steps.arrow_forwardpls help on all, inlcude all steps.arrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning