Basic Biomechanics
7th Edition
ISBN: 9780073522760
Author: Susan J Hall
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 4IP
If μs between a basketball shoe and a court is 0.56, and the normal reaction force acting on the shoe is 350 N, how much horizontal force is required to cause the shoe to slide? (Answer: >196 N)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a person has a vertical force of 10.25N with a nylon strap of a 2.5cm of width and length of
10cm in the trapezius muscle, how much time does the person need to feel pain in the
muscle? How much time is needed to injure or damage the muscle? Must show every
mathematical process.
A scientist was investigating if differences in the frictional work performed on a model car can change
depending on its mass (in grams) and whether the car moves up or down an inclined plane. They decided to
measure the amount of frictional force experienced by the model car and the distance it traveled in meters.
The scientists were able to evaluate the frictional work using the following data.
Mass (g)
Distance (m) Force
Work Done by Friction (J)
car going up the incline
100
39
0.063
2.457
car going down the incline 70
39
0.2309 ?
It is known that the relationship between force and distance determines the work done by friction (W+).
W₁ = fd
Wf work done by friction
f = force
d = distance
Question:
How much work done by friction was exerted on the car as it moved down the inclined plane?
You may use a calculator.
1
2.457
9.005
11.46
16.16
PREVIOUS
FINISH
2. a) Label the system provided below, including the reference frame, moment arms and vector forces
with the information provided.
Internal moment arm = 4cm +0.04m
External moment arm relative
to the segment weight = 25cm 0.25m
External moment arm relative
to the load weight = 45cm 40.45m
Segment weight = 50 N
Load weight = 100 N
Lower leg segment angle relative
to horizontal plane = 45°
Quadriceps tendon angle = 45°
Axis of
rotation
MF
SW
LW
2b) Using the figure in 2a., calculate the external torque of the system relative to the normal
component of segment and load weights listed above.
2c) Calculate the amount of both the tangential component of the muscle force and the muscle force
itself required to keep this system in a state of static equilibrium.
Chapter 12 Solutions
Basic Biomechanics
Ch. 12 - How much force must be applied by a kicker to give...Ch. 12 - A high jumper with a body weight of 712 N exerts a...Ch. 12 - What factors affect the magnitude of friction?Ch. 12 - If s between a basketball shoe and a court is...Ch. 12 - A football player pushes a 670-N blocking sled....Ch. 12 - Lineman A has a mass of 100 kg and is traveling...Ch. 12 - Prob. 7IPCh. 12 - A ball dropped on a surface from a 2-m height...Ch. 12 - A set of 20 stairs, each of 20-cm height, is...Ch. 12 - A pitched ball with a mass of 1 kg reaches a...
Ch. 12 - Identify three practical examples of each of...Ch. 12 - Prob. 2APCh. 12 - A 2-kg block sitting on a horizontal surface is...Ch. 12 - Explain the interrelationships among mechanical...Ch. 12 - Prob. 5APCh. 12 - A 108 cm, 0.73-kg golf club is swung for 0.5 s...Ch. 12 - A 6.5-N ball is thrown with an initial velocity of...Ch. 12 - Prob. 8APCh. 12 - Using the principle of conservation of mechanical...Ch. 12 - Prob. 10AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, bioengineering and related others by exploring similar questions and additional content below.Similar questions
- 72. Find J and K in the rotational system shown in Figure P4.18 to yield a 30% overshoot and a sett- ling time of 3 seconds for a step input in torque. [(Section: 4.6] 000 K FIGURE P4.18arrow_forwarda toy car rolls 10 meters (m) across the floor. it takes 5 seconds (s) to cross this distance. what is the speed of this car?arrow_forwardA) Describe the difference between strength and power during a squat. Provide a quantitative example that illustrates the difference. B) During a squat, the weight you have on your shoulders has a certain amount of gravitational potential energy. As you squat down and come to a stop at the bottom of the squat, some of that energy is lost. Where does it go?arrow_forward
- Define the following parameters that can be assessed via isokinetic dynamometry (attempt to use your own words after reviewing data sheet): Peak Torque Time to peak torque Angle of peak torque Torque at 0.2 seconds Peak torque/body weight Total work Work fatigue (Fatigue Index) Average powerarrow_forwardBased on the acceleration in the above ball rolling down an inclined plane (with vo = 0 meters per second), how far would it have traveled along the inclined plane in the first six seconds of rolling? 9 meters 16 meters 25 meters 36 meters 49 metersarrow_forwardney: Load (L) = 5 kgs = Effort E = Fulcrum Weight of forearm = 1.8 kgs L = Load Biceps brachii muscle Distance of load from elbow joint = 35 cm %3D Effort (E) = contraction of biceps brachii Distance of center of mass of forearm from elbow = 17 cm Distance of tendon from elbow = 4 cm A) Draw the free-body diagram to represent the forces and moments Load (L) = weight of object plus forearm B) Write the torque equation for static equilibrium Fulcrum (F) = elbow jointarrow_forward
- Nonearrow_forwardCalculate the total amount of work performed in 5 minutes of exercise on the cycle ergometer, given the following:Resistance on the flywheel = 25 NCranking speed = 60 rpmDistance traveled per revolution = 6 metersarrow_forwardSuppose as astronaut has landed on Mars. Fully equipped, the astronaut has a mass of 130 kg, and when the astronaut gets in scale, the reading is 477 N. What is the acceleration due to gravity on Mars?arrow_forward
- When Galileo Galilei rolled a ball down an inclined plane, it traveled 1.0 meters in the first second, and a total of 4.0 meters in the first two seconds. What was its acceleration on this inclined plane? 2.0 meters per second2 3.0 meters per second2 4.0 meters per second2 5.0 meters per second2 6.0 meters per second2arrow_forwardGive an interpretation for the following graph:arrow_forwardIn terms of mass and acceleration, what is the equation for force?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license